

AFRL-IF-RS-TR-2003-174
Final Technical Report
July 2003

A CASE-BASED REFLECTIVE NEGOTIATION
MODEL

University of Kansas

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. JH357

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-174 has been reviewed and is approved for publication.

APPROVED:
ROBERT J. PARAGI
Project Engineer

 FOR THE DIRECTOR:
JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JULY 2003

3. REPORT TYPE AND DATES COVERED
Final Jun 99 – Apr 03

4. TITLE AND SUBTITLE
A CASE-BASED REFLECTIVE NEGOTIATION MODEL

6. AUTHOR(S)
Costas Tsatsoulis

5. FUNDING NUMBERS
C - F30602-99-2-0502
PE - 62301E
PR - H357
TA - 01
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Kansas
2383 Irving Hill Road
Lawrence Kansas 66044-7552

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-174

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Robert J. Paragi/IFTB/(315) 330-3547/ Robert.Paragi@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The goal of our work was to create autonomous agents that worked in a domain of constrained resources and that used
case-based negotiation to allocate resources in a satisfying manner. The domain of application was distributed sensor
management for multi-target tracking. We developed two separate but similar formalisms for the implementation of the
negotiation agents: first, a real-time architecture based on the Belief-Desire-Intention (BDI) agent framework and
second, a near real-time architecture that relied on domain heuristics. Both architectures used Case-Based Reasoning
(CBR) to select a negotiation strategy, and then negotiated using argumentation. The BDI architecture used a real-time
Linux kernel to have time awareness. In addition to this main thrust of our work, we were also tasked to provide tools
for analyzing the performance of Java code, real-time Linux services, a Communication Server to model the RF
communication channels of the sensors, and for studying and improving the Challenge Problem code.

15. NUMBER OF PAGES
50

14. SUBJECT TERMS
Autonomous Negotiation, Autonomous Agents, Case-Based Reasoning, Intelligent Agents

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1. Introduction... 1

2. Real-Time, Case-Based Negotiating Agents using BDI... 1
2.1. Agent Characteristics .. 3
2.2. A Logical Protocol for Real-Time Argumentative Agent Negotiations............................. 4
2.3. Coalition Formation.. 10
2.4. Complete Negotiation Rules and Protocol... 11

2.4.1. Initiating Behavior... 12
2.4.2. Responding Behavior ... 19

2.5. Implementation ... 27
2.5.1. Real-Time Scheduling Service (RTSS) ... 28
2.5.2. Case-Based Argumentative Negotiation.. 28
2.5.3. Real-Time Enabling Functional Predicates .. 29
2.5.4. Counter Offer ... 32

2.6. Results... 33
3. Near-Real-Time Negotiating Agents using Domain Constraints 35

4. Challenge Problem Tools and Studies .. 38
4.1. The KU Real Time System for Linux (KURT and RTSS) .. 38
4.2. The KU KickStart Tools (KUKT) .. 39
4.3. Data Streams .. 40
4.4. The Communication Server .. 41
4.5. Modifications to the CP Code.. 42

5. Leave-Behinds and Publications.. 43

6. References.. 44

ii

List of Illustrations

Figure 1 Our negotiation protocol. ... 6
Figure 2 (a) Outright rejection and (b) outright agreement from the initiating agent’s point of

view... 18
Figure 3 Negotiation from the initiating agent’s point of view ... 19
Figure 4 (a) Outright rejection and (b) outright agreement, from the responding agent’s point of

view.. 24
Figure 5 Negotiation from the responding agent’s point of view.. 25
Figure 6 Tracking accuracy vs. agent behavior .. 34
Figure 7 Number of messages to agents and to tracking software vs. agent type 34
Figure 8 Percentage of successful negotiations vs. negotiation strategy type 35
Figure 9: Dynamic allocation of trackers to targets; May 2002 CP set-up 36
Figure 10: Experiment configurations with 6 targets and 18 sensors.. 37
Figure 11: Tracking of six targets.. 38

1

1. Introduction
The goal of our work was to create autonomous agents that worked in a domain of constrained
resources and that used case-based negotiation to allocate resources in a good-enough soon-
enough manner. The sponsor elected the domain of application to be distributed sensor
management for multi-target tracking. We developed two separate but similar formalisms for the
implementation of the negotiation agents: first, a real-time architecture based on the Belief-
Desire-Intention (BDI) agent framework, and second, a near real-time architecture that relied on
domain heuristics. Both architectures are described in the rest of this document.

In addition to this main thrust of our work, we were also tasked to provide tools for analyzing the
performance of Java code, real-time Linux services, a Communication Server to model the RF
communication channels of the sensors, and for studying and improving the Challenge Problem
code.

2. Real-Time, Case-Based Negotiating Agents using BDI
While negotiation has been used in the past in problem solving in multiagent systems, in our
work we concentrate on negotiations and activities that must occur in real time. The introduction
of hard real time in negotiation and action execution complicates the problem greatly, and
existing negotiation protocols cannot provide an adequate solution. In this report we describe a
real-time negotiation model that is used in resource allocation problems. As an example domain
we use multi-sensor target tracking, where each agent controls a sensor with a limited sensing
coverage area. As a target moves across space, agents have to cooperate to track it. Each agent
(together with the sensor it controls) consumes resources such as time, battery power, bandwidth
of the communication channel, and some percentage of the CPU where the agent resides, and
each agent strives to manage and utilize its resources efficiently and effectively. This motivates
the agents to share their knowledge about a problem based on their viewpoints in their effort of
arriving at a solution. The problem of global resource allocation becomes a problem of locally
negotiated compromises and local constraint satisfaction.

We developed a logical negotiation protocol that incorporates a real-time BDI model (Rao &
Georgeff, 1991, 1995) to dictate the rules of encounter among our autonomous agents. A feature
of our problem involves generating a “good-enough, soon-enough” solution1 to resource
allocation. Since time is critical—for example, to make a good triangulation for the location of a
target, three different sensors have to make a measurement within 2 seconds of each other—
agents use time to guide their negotiation behavior. We base our temporal model on (Allen
1983) in which logical events or propositions can be ordered consistently along a timeline and
durations of events or propositions holding true can be derived from their relationships with
others. This temporal logic allows us to define explicitly the transition of a BDI state to another,
including causality and co-existence. Equipped with the definition of time, we are able to model
our negotiation activity with more accuracy, spelling out how and when a state changes and how
and when it changes with other states, such as state 1s triggers state 2s , 1s has to occur before

2s , 1s must hold true for some time during which 2s must hold true as well, and so on.
Therefore, states may change their truth values during a reasoning process as long as the states
are needed to hold constant during that time period releasing other states to be updated or

1 A “good-enough, soon-enough” solution is sometimes known as a “satisficing” one—a solution
that satisfies the minimum problem requirements and the time constraints.

2

changed by other events or states. This is critical in our agent design as each agent is multi-
threaded, meaning that several threads may attempt to access and modify the same variable
(state) at the same time. To maintain data integrity, when a thread is accessing or modifying a
variable, other threads will be blocked, and this is the common approach. However, software
designers must find out how and for how long the threads will be blocked; and this information
is very important in a real-time system like ours. With the temporal logic, we know for how
long threads will be blocked and how these threads will be blocked awaiting which variables
(states) to become accessible. This allows us to fine-tune the system to increase the efficiency of
the negotiation process. Further, by incorporating temporal logic and BDI models into our
negotiation protocol, we can guarantee both logically and temporally the completion of a
negotiation. We know what states are needed (and when they are needed) for a negotiation to
logically complete, and we also can model the time distribution or usage needed for each step of
the negotiation to complete within certain time constraints. Note that temporal components have
been in place in the BDI model (Rao and Georgeff 1991, Cohen and Levesque 1990) to
determine how the three modalities are related over time. For example, taking time into
consideration allows one to have persistent intentions, inevitable outcomes, and so on. In our
model, we use the temporal logic to control the stability of a state, which in turn facilitates our
multi-threaded solution.

We further define two sets of communicative acts—one for handling incoming messages and one
for handling outgoing messages. A communicative act that handles incoming messages is a
function that turns an event (the arrival of a message) to a set of BDI states. The function parses
the incoming message and generates states that are necessary for the agent reasoning during a
negotiation process. Similarly, a communicative act that handles outgoing messages is a
function that composes a message based on the agent’s current BDI states and sends it out via a
communication channel. We qualify these acts with temporal logic and incorporate them into
the negotiation protocol. In addition to the communicative acts, we utilize a suite of real-time
enabling functional predicates to assist agents in negotiations. These predicates are events that
take time to execute and they also generate or modify states.

Since each agent is autonomous and reacts to its environment, each has its own knowledge base
and its own monitoring of the world events, including its sensor, its neighbors, and the targets.
To increase the fault tolerance of the multi-agent system, each agent is responsible only for the
resources it controls (in our example domain, its sensor and associated components), and it
controls the minimal set of resources it requires to achieve its task. In our work agents have
minimal knowledge and information—they know how to perform their tasks, have a local,
limited view of the world provided to them by the equipment they control, and know of the
existence of other similar agents, but they do not have an explicit view of the information of the
other agents. There is some implicit knowledge, namely that the other agents control a set of
resources, that they are willing to cooperate, that they are capable of negotiation for resource
sharing, and that they are truthful. To establish a common reasoning basis during a collaborative
effort, an agent is required to communicate to its potential partner why it needs to share the
resources controlled by the partner. This knowledge exchange can be done via different
mechanisms such as a blackboard where agents post information on a common site, or auctions
where a contractor-agent oversees the message passing among contractee-agents, or through
agent-based negotiations where agents exchange information directly. In our approach, we use
negotiations motivated by a global goal—to track as many targets as accurately as possible—
guided by a set of local optimization criteria that affect the strategies. During a negotiation

3

agents exchange information of their individual viewpoints of the current (and relevant) world
situation. In this manner, the agents are able to argue and attempt to persuade each other
explicitly, resulting in efficient knowledge transfer. We thus do away with a centralized
information facility that requires constant updates and polling from agents, and, instead,
knowledge is exchanged when necessary resulting in less communication traffic. Knowledge
inconsistencies are resolved in a task-driven manner, making knowledge management easier.

One important part of the negotiation process is the determination of the negotiation strategy
based on the current task description. To do so, we use a model derived from case-based
reasoning (CBR) (Kolodner 1993) that is time-constrained and that retrieves the most similar
cases, selects the best case based on utility theory, adapts the case to the current situation, and
then uses the case’s negotiation strategy to perform negotiations. The CBR approach limits the
time needed to decide on a negotiation strategy—selection (through retrieval) and generation
(through adaptation) of a situation-appropriate strategy—and enables the agent to learn
autonomously and adapt itself to different scenarios in the domain.

2.1. Agent Characteristics
Each agent has the following characteristics:

(1) Autonomous – Each agent runs without interaction with human users. It maintains its own
knowledge base, makes its own decisions, and interacts with its sensor, neighbors and
environment.

(2) Rational – Each agent is rational in that it knows what its goals are and can reason and
choose from a set of options and make an advantageous decision to achieve its goal
(Wooldridge and Jennings 1995).

(3) Communicative – Each agent is able to communicate with others, by initiating and
responding to messages, and carrying out conversations.

(4) Reflective (or Aware) – According to Brazier and Treur (1996), a reflective agent reasons
based on its own observations, its own information state and assumptions, its communication
with another agent and another agent’s reasoning, and its own control or reasoning and
actions. By being reflective, each agent is time aware and situationally aware. When an
agent is time aware, it observes time in its decision making and actions. Its reasoning takes
time into account, and thus, the outcome of a reasoning process is partially dependent on
time. When an agent is situationally aware, it observes its current situation, the situation of
its neighbors, and that of the world and makes decisions based on these observations. In
general, an agent that is situationally aware observes the resources that it shares with other
agents, its current tasks, messages, profiles and actions of its neighbors, and the external
changes in the environment. In our work we require a stronger level of situational
awareness. An agent also observes its own resources that sustain the being of the agent. For
a hardware agent, these resources may be the battery power, the radio frequency links, etc.
For a software agent, these resources may be CPU, RAM, disk space, communication
channels, etc. Note that, for example, in (Sandholm & Lesser 1995), a bounded rationality
model is used where each agent has to pay for the computational resources (CPU cycles) that
it uses for deliberation, assuming that the resources are available. In our model, however, we
require an agent to be aware of whether the resources are available before even starting a
negotiation.

(5) Honest – Each agent does not knowingly lie or intentionally give false information. This
characteristic is also known as veracity (Galliers 1988).

4

(6) Adaptive – Each agent is able to adapt to changes in the environment and learns to perform a
task better, not only reactively but also from its past experience.

(7) Cooperative – Each agent is motivated to cooperate if possible with its neighbors to achieve
global goals while satisfying local constraints.

Generally, the agents in a multi-agent system may be controlling different resources and use
different reasoning and negotiation techniques. In our approach, we require (1) that all agents be
capable of negotiation in which they share a common vocabulary that enables message
understanding, and (2) that each agent knows what resources may be used or controlled by a
non-empty subset of the other agents in the environment so that it can determine whom to
negotiate with. In our particular domain of application, each agent controls the same resources,
since each one controls the same type of sensor. Also, each agent uses the same negotiation
methodology based on case-based reasoning, but the individual case bases differ.

Formally, our multi-agent system architecture is defined as follows. Suppose that we denote a
multi-agent system as Ω. Suppose that we define a neighborhood of an agent iα ,

iαΨ , such that
Ω⊆Ψ

iα , ∅≠Ψ
iα , and that the agent iα knows about all other agents in the neighborhood.

Thus, we have ()jiji j
i

ααλαα α ,,, ∀Ψ∈ where ()ba,λ means agent a knows about the existence of
agent b and can communicate with agent b. A neighborhood is different from a team as defined
in (Tambe, 1997), which is task-driven and formed among a set of agents to accomplish a task.
A neighborhood is a subset of agents of the multiagent system that could form a team. In our
particular domain of application (multisensor target tracking), a neighborhood consists of a set of
agents that control sensors that are physically close and whose sensing beams overlap. So, in our
multi-agent system Ω, there is a set of neighborhoods, { }

Nααα ΨΨΨ=Ω ,,,
21
K , and each

neighborhood can form any number of teams. Neighborhoods do not necessarily have the same
number of members, and neighborhoods may share members.

When a target is sensed, an agent tracks the target, refers to its neighborhood information, and
dynamically forms a negotiation coalition, that is, a subgroup of its neighborhood agents with
which it may negotiate to request resources to assist it in its task. For example, when an agent
detects a target in its sensing area, the agent immediately obtains an estimate on the position and
velocity of the target. It then projects the future positions of the target and identifies the
neighbors whose sensors are able to cover the target moving in the projected path. These are
agents that control resources (i.e. sensor beams) that it needs to track the target, and these are the
agents that will be part of the negotiation coalition.

2.2. A Logical Protocol for Real-Time Argumentative Agent Negotiations
In this section, we describe the logical protocol for our real-time argumentative agent
negotiations. Argumentative negotiations differ from traditional negotiations because the agents
conducting the former negotiate about why one of the agents needs to perform a certain task in
addition to what the task is. Therefore, our work is similar to (Parsons et al. 1998). However,
we assume that agents have the same inference rules. Parsons’ work assumes that agents may
have different ones, and thus his argumentation protocol requires agents to exchange inference
rules as well. Moreover, we incorporate real-time issues into our design guidelines.

5

Figure 1 shows our negotiation protocol in a state diagram between two agents: a and b. State 0
is the initial state, the double-circle. State 1 is the first handshake state, indicating whether the
initiated negotiation will be entertained. State 4 is the initiating state while state 5 is the
responding state. The initiating state is where the initiating agent, a, returns to, basically the
processing loop of the negotiator module. The responding state is where the responding agent, b,
returns to, respectively. Agent a initiates a negotiation request to b by sending an INITIATE
message (initiate(a,b)), the state transitions to 1. At this juncture, there are four possible
scenarios. First, agent b may outright refuse to negotiate by sending a NO_GO message
(no_go(b,a)). This results in a final state of failure (state 2, rejected). Second, agent b may
outright agree to the requested task by sending an AGREE message (agree(b,a)). This results in
a final state of success (state 3). Third, agent b may decide to entertain the negotiation request
and thus sends back a RESPOND message (respond(b,a)). This transitions the state to 4.
Fourth, there may be no response from agent b. Thus agent a, after waiting for some time, has
no choice but to declare a no response (no_response(a)) and moves to a state of failure (state 8,
channel _jammed).

When the agents move to state 4, the argumentative negotiation begins and iterates between
states 4 and 5 until one side opts out or both sides opt out or both sides agree. During the
negotiation, (1) agent a provides information or arguments to b by sending INFO messages
(info(a,b)), (2) agent b demands information or arguments from a by sending MORE_INFO
messages (more_info(b,a)), (3) if agent a runs out of arguments, it sends a INFO_NULL
message to b (info_null(a,b)), (4) if agent b runs out of patience, it counter-proposes by sending
a COUNTER message to a (counter(b,a)), and (5) agent a can agree to the counter offer
(agree(a,b)) and move to the state of success (state 3), or provide more information (info(a,b)) as
requested, or provide no information (info_null(a,b)) if it has time to do so, hoping that agent b
might come up with a better offer, or simply disagrees (abort(a,b)). Thus, an initiating agent will
always negotiate until it has run out of time or when the responding agent opts out. However, an
initiating agent may abort a negotiation, and this is where the conditions come into play. If the
agent realizes that it has already obtained what it wants from other negotiations happening in
parallel, then it aborts the current negotiation; or if the agent realizes that it no longer cares about
the current negotiation, then it aborts. These conditions are based on desires and intentions,
which in turns are based on beliefs of the agent. When an agent runs out of time, it issues an
OUT_OF_TIME message to the other agent and quits the negotiation with a failure (state 6,
out_of_time). When an agent aborts, it issues an ABORT message to the other agent and quits
the negotiation with a failure (state 7, abort). Finally, whenever an agent does not hear from the
other agent within an allocated time period, it assumes that the communication channel has been
jammed or congested and quits with a failure (state 8, channel_jammed). Note that we
distinguish NO_GO, STOP, OUT_OF_TIME, and ABORT in the above protocol. With the
above different end states, agent a can determine whether the negotiation has failed because it
has exhausted all its arguments (STOP) or otherwise and subsequently learn from the failure.

6

Figure 1 Our negotiation protocol. Squares are final states. The double-circle is the initial state.

We use an expanded multi-context BDI agents framework of Parsons et al. (1998), Noriega and
Sierra (1996) to describe the logical framework of our negotiation protocol. As presented in Rao
and Georgeff (1995), there are three modalities. First, beliefs (B) represent the states of the
environment and the agent. There are also belief states that arise during negotiations, as agents
learn each other’s beliefs and intentions. Second, desires (D) represent the motivations of the
agent. Third, intentions (I) represent the goals that the agent wants to achieve. We also assume
the following axioms (Parsons et al. 1998):

1. () ()())(: qBpBqpBB →→→
2. () ()pBpBB ¬¬→:
3. () ()()pBBpBB →:
4. () ()()pBBpBB ¬→¬:

Axiom 1 states that if one believes that p implies q, then if one believes p, then one believes q as
a consequence. Axiom 2 states that if one believes p, then one does not believe the negation of
p. Axiom 3 states that if one believes p, then one also believes that it believes p. This ensures
that an agent knows and believes in what it believes. Similarly, Axiom 4 states that if one does
not believe p, then one believes that it does not believe p. Similar axioms for desires and
intentions are:

5. () ()())(: qDpDqpDD →→→
6. () ()pDpDD ¬¬→:

7

7. () ()())(: qIpIqpII →→→
8. () ()pIpII ¬¬→:

We adopt the strong realist BDI agent model of Rao and Georgeff (1991) such that (1) an agent
only intends to do what it desires, and (2) an agent only desires what it believes. However, we
do not adopt other rules presented in (Parsons et al. 1998), regarding the communication unit,
because in our case (1) an intention for performing a task does not necessarily imply a
communication of the performance of the task—in our domain, a task may sometimes be
performed by the agent itself, and (2) we do not require an agent to report a completion of a task
to another agent—because in our current design, an agent assumes that if another agent agrees to
perform a task, it knows that that agent will try its best to perform and complete the task, and
that whether it believes the task has been performed is no longer important. In the future,
however, we plan to include a monitoring mechanism in an agent to enrich our real-time
modeling of events and agent behavior in making better decisions. At that time, an agent would
have to care whether a task has been performed successfully to update its own belief states, but
would still not depend on the communicated information for the update.

We incorporate temporal logic into our protocol to explicitly define the various belief, desire,
and intention states of an agent and when they are true. This is key to the real-time
implementation of the protocol. To satisfy real-time constraints, our agent, as shown in Figure 1,
consists of multiple concurrent processing threads. Each thread carries out a set of tasks, and
these tasks access and modify the same states at different times. Some states must not be
modified before certain actions have been carried out; some states should not be accessed before
certain results have been obtained. To implement such a state synchronization across multiple
concurrent processes, we use temporal logic to define when a state must be true and the duration
for that state to stay true. Without the temporal logic component, it would have been close to
intractable to manage the inter-thread, real-time activities.

As previously mentioned, Cohen and Levesque (1990) and Rao and Georgeff (1991) have
incorporated temporal components into the BDI model. In Cohen and Levesque (1990),
intentions are defined in terms of temporal sequences of an agent’s beliefs and goals. Each
possible world extendable from a current state at a particular time point is a time line
representing a sequence of events. As such, the inter-modal relationships are stronger than those
in Rao and Georgeff (1991). For example, an agent fanatically committed to its intentions will
maintain its goals until either they are believed to be achieved or believed to be unachievable.
Thus, intentions are seen as a special class of desires. Rao and Georgeff (1991), on the other
hand, present an alternative possible-worlds formalism for BDI-architectures. Instead of a time
line, they choose to model the world using a temporal structure with a branching time future and
a single past, called a time tree, where a particular time point in a particular world is called a
situation. There are three crucial elements to the formalism. First, intentions are on a par with
beliefs and goals. This allows them to define different strategies of commitment and to model a
wide variety of agents such as blinded, single-minded, and open-minded agents. Second, they
distinguish between the choice an agent has over the actions it can perform and the possibilities
of different outcomes of an action, factoring in the uncertainty that the environment brings into
the determination of the outcomes. Third, they specify an interrelationship between beliefs,
goals, and intentions that allows them to avoid problems such as commitment to unwanted side
effects.

8

Compared to our proposed model below, the incorporation of the temporal elements is different.
In Cohen and Levesque (1990), the temporal component was used to define intentions through
commitment and persistence, derived from beliefs and goals. In Rao and Georgeff (1991), it was
used to order possible worlds from a situation in both the time and space dimensions. Each time
tree denotes the optional courses of events choosable by an agent in a particular world. For
example, an agent has a belief φ , denoted ()φB , at time point t if and only if φ is true in all the
belief-accessible worlds of the agent at time t. In our model, however, we use the temporal
component to define the temporal duration that a state needs to be stable, or needs to occur in
order for another state to take place. Thus, our motivation is to help design and implement
agents that are multi-threaded and multi-tasking. We do not use temporal logic to define the BDI
modalities. In the following subsections, we formalize our theory of the actions depicted in the
state diagram of Figure 1.

To incorporate real-time concerns into our logical negotiation protocol, we use several interval
relationships outlined in Allen (1983) and Allen and Ferguson (1994). Each interval t has a start
time, st , and a finish time, ft , and its duration is sf tt − . If sf tt − equals the smallest amount
within the resolution of the domain problem, then the interval becomes a moment or a point.
There are seven basic relations between temporal intervals:
1. ()jiBefore , where interval i ends before interval j.
2. ()jiMeets , where as soon as i finishes, interval j starts, i.e., the two intervals are consecutive.
3. ()jiOverlaps , where a portion of interval i overlaps a portion of interval j in time and i starts

before j and i ends before j.
4. ()jiStarts , where interval i starts at the same time as interval j but interval i has a shorter

duration.
5. ()jiFinishes , where interval i finishes at the same time as interval j but interval i has a shorter

duration.
6. ()jiDuring , where interval i starts after interval j and interval i ends before interval j.
7. ()jiEquals , where both intervals have the same durations and start and end at the same times.
We also adopt the homogeneity axiom schema such that a proposition is homogeneous if and
only if when it holds over an interval t, it also holds over any sub-interval within t. Within the
framework of our negotiation protocol, the BDI states are all homogeneous propositions, hence
the use of strong negation ¬ . The predicates such as the communicative acts are anti-
homogeneous (Allen 1991) since, for example, the action of composing and sending a message
is a process that does not generally hold unless completed in the end. We also introduce a
notational convenience []e as the interval of an event/action, or, in the case of homogeneous
positions, as the interval of a proposition holding true.

In our protocol, we have two sets of corresponding communicative acts. One is for receiving
and parsing an incoming message; the other for composing and sending an outgoing message.
For example, a communicative act that composes a negotiation request and initiates contact with
a potential negotiation partner is of the following form:

()()trDoriinitiateCout ,,,,: ρ

9

where the predicate initiate is the communicative act (composing and sending), i is the initiating
agent, r is the responding agent, ()ρ,rDo is the requested task, i.e., “r do task ρ ,” and t is the
time taken for the communicative act to start and finish.

A communicative act is an event that performs a set of tasks consecutively such that the sum of
the durations of the tasks is the duration of the communicative act. A communicative act may
generate new propositions, may cause a new state externally to another agent, and may be
terminated by another proposition or event. For example, at the end of the interval t, if the
communication is successful, then the responding agent will receive the request,

()()krDoriinitiateCin ,,,,: ρ , where, in theory, ()ktMeets , , and in practice (due to communication
latency), ()ktBefore , . On the other hand, if the communication is unsuccessful (e.g., due to
communication channel being jammed), then the predicate initiate of the initiating agent will be
terminated by a terminator (Vere 1983). To simplify our discussions, we use

()trequestreceiversenderfCin ,,,: and ()trequestreceiversenderfCout ,,,: to differentiate
between incoming and outgoing message handling, where f is one of the acts defined in our
protocol. Currently, we have the following communicative acts, as depicted in Figure 2: initiate,
respond, no_go, agree, abort, out_of_time, counter, more_info, info, info_null, and stop, for a
total of 22.

One of the objects generated by a outC communicative act is the message. Our message syntax is

()contentsrequesttypereceiversendermsg ,,,, where the type of the message denotes one of the
communicative acts and the contents consist of whatever pertinent to the request. In the
following discussion, we often mention the messages in the same breath as the communicative
acts and use them interchangeably.

Vere (1983) described a proposition as bounded by its holding true over a time interval, with a
limited life span terminated by later contradictory assertions. Under Vere’s definition, an
assertion T is a terminator for an assertion A if and only if: (1) A and T are contradictory, (2) T
follows A in time, and (3) no assertion T ′ exists satisfying the first two conditions such that T
follows T ′ in time. Basically, [] []()TAMeets , .

Take our communicative acts for example. Suppose an initiating agent performs initiate. As we
shall see later, the agent has a set of BDI states (including its belief that the communication
channel is operating, ()tgoodchannelBB i ,_:) that holds true such that the collective interval, Θ ,
of those states overlaps the communicative act’s interval, [] []()initiateOverlaps ,Θ . That is, the
communicative act may continue after Θ no longer holds. Further, if the communication fails,
which in this case means the message is not sent, the agent generates a belief

()kgoodchannelBB i ,_:¬ . This becomes a terminator of initiate since one of the preconditions for
the communicative act and the new belief state are contradictory and ()ktMeets , . As a result, the
action is terminated. Note that a proposition or an assertion in our logical negotiation protocol
holds until terminated by a terminator, and so does a terminator. A termination may lead to the
stoppage of a set of actions or tasks, which in turn may lead to the stoppage of a set of events.
An action or task may, however, terminate by itself normally as it completes within a time
interval.

10

2.3. Coalition Formation
When an agent, for example, senses a target, it needs to form a coalition from which to ask for
help. To do so, it collects all its current BDI states and external information to obtain a list of
potentially helpful neighbors. Since each task is new, that means in the beginning of the
coalition formation, there exist no belief states such that ()()BtnCanDoBB ,,: ρα where n is a
member of the set of all known neighbors, αN , of the agent α and ρ is the new task. After a
domain-specific search process, the agent obtains a list of potentially helpful neighbors,

αα NN ⊆′ . At this point, equipped with this list, the agent ()()BtnCanDoBBn ,,: ρα∀ where αNn ′∈ .
Then the agent checks its needs and creates desires for only a certain number of these neighbors
to perform the tasks (since enlisting everybody one knows to help out a task is counter-
productive). In our actual agent design, these neighbors are ranked according to their utility
values. The agent then checks the number of available negotiation threads that it may use to
negotiate with these neighbors. That number trims αN ′ to obtain αN ′′ . At this point, the agent

()()DtnDoDDn ,,: ρα∀ where αNn ′′∈ . Subsequently, as the agent begins to send out requests, with
each successful contact, the agent forms ()()()ItnDonNegotiateII ,,,: ρα with the neighbor n that has
made contact. In the end, all neighbors contacted are in the coalition ()ρα

r
C such that

() αα ρ NC ′′⊆
r and where (){ }ρα

ρρρρ rL
r

C,,, 21= is a set of subtasks that contribute to the original
task. In this way, each neighbor is contacted to perform a subtask and a coalition formation
drives an agent to negotiate with its neighbors. In terms of the temporal interval relationships,
since a negotiation process is stepwise and interruptible, if an agent does not have the desire for
a neighbor to perform a task, then it does not intend to negotiate with that neighbor regarding
that particular task. Thus, we have the following condition: () ()DIBD ttDuringttDuring ,, ∧ .

Note that in our model, we have N 1-to-1 negotiations but do not conduct direct 1-to-N
negotiations. That is, during a negotiation, a negotiation thread does not consult directly other
negotiation threads of the same agent. However, the parent agent of the negotiation threads does
examine the completion status of its negotiation threads and may change the beliefs, desires, and
intentions of the negotiation threads through negotiation-related predicates due to the results of
other negotiations. This design choice is motivated by real-time concerns. Instead of having the
negotiator module of a negotiation thread monitoring the activities of other negotiation threads
of the same agent, the core thread of the agent monitors the negotiation activities through the
coalition manager. The coalition manager determines whether a coalition is still viable, whether
a coalition has been achieved, and whether a coalition is to be aborted, and commands each
individual negotiation thread accordingly. Thus, each negotiator can concentrate on their
negotiation task at hand.

Our coalition formation consists of three stages: (1) coalition initialization where an agent
obtains a ranked list of potentially helpful neighbors, αα NN ⊆′ based on the current problem, (2)
coalition finalization where the agent contacts the neighbors in αα NN ⊆′ to negotiate, and (3)
coalition acknowledgment where the agent concludes the success or failure of the coalition and
inform neighbors who have agreed to help. In coalition initialization, a neighbor is ranked based
on its potential utility in helping with the current problem. This potential utility is based on the
past and current relationships between the agent and the neighbor, and the ability of the neighbor
with the current problem. For example, if the target is moving towards the sensor coverage of
the neighbor and will be inside the coverage for a long time, then the neighbor has a high

11

potential utility. During the coalition finalization step, the agent negotiates with the ranked
neighbors concurrently. As each negotiation thread reports its final status the core thread (the
parent agent), the parent agent decides whether to abort meaningless negotiations or to modify
negotiation tactics. After the finalization step, the agent knows whether it has a coalition. If it
does, it sends a confirmation message to all the neighbors who have agreed to help. If it does
not, it sends a discard message to those who have agreed to help; this is the acknowledgment
step.

2.4. Complete Negotiation Rules and Protocol
Our agents are cooperative and are also directed to satisfy global goals. Each is motivated to
look for help from its neighbors and to entertain negotiation requests from its neighbors, and
each genuinely wishes to have a successful negotiation. First, we have the implicit assumption

()alwaystCooperateDD ,: α where 0, timet salways = is the start time and ∞=falwayst , is the finish time,
meaning that the desire is always true. Second, we have ()alwaystGoalGlobalSatisfyDD ,: −−α .

When an initiating agent, i, negotiates with a neighbor, r, the agent has the following BDI states,
as shown in the previous section:

() ()()
()() ()()()IiDi

Bialwaysi

trDorNegotiateIItrDoDD

trCanDoBBtCooperateDD

,,,:,,:

,,:,:

ρρ

ρ

∧

∧∧
.

Combining the above states with ()alwaysi tGoalGlobalSatisfyDD ,: −− , we assume that each agent:

()()()()Ii trDorNegotiatesucceedII ,,,: ρ .

The above intention motivates an initiating agent to continue negotiating. In the later discussion,
we use this intention to explicitly drive the negotiation axioms, while keeping other BDI states
implicit.

When a responding agent, r, receives a request to negotiate from an initiating agent, i, the agent
parses the message and examines its own current states. If it believes it can perform the
requested task yet does not have the desire to do so, then because of the desire to cooperate, it
has the following BDI states:

() ()()
()() ()()()IrDr

Bralwaysr

trDoiNegotiateIItrDoDD

trCanDoBBtCooperateDD

,,,:,,:

,,:,:

ρρ

ρ

∧¬∃

∧∧
.

Similarly, combining the above states with ()alwaysr tGoalGlobalSatisfyDD ,: −− , we have the
following that keeps the agent negotiating:

()()()()Ir trDoiNegotiatesucceedII ,,,: ρ .

A completely successful negotiation results in ()()Dr trDoDD ,,: ρ . The negotiating strategy of an
initiating agent is to help the responding agent achieve ()()Dr trDoDD ,,: ρ while that of the

12

responding agent is to let itself be persuaded by the initiating agent’s arguments in order to
achieve ()()Dr trDoDD ,,: ρ . As we will see in the next two sections, there are partially successful
negotiations and different types of failures. Furthermore, we have to deal with the duration of a
BDI state. A BDI state holds true only sufficiently long: (1) no longer than the duration of the
task to be performed, or (2) until ended by a terminator. For the implicit assumptions, the tasks
Cooperate and Satisfy-Global-Goal have infinite duration. So, in ()()Dr trDoDD ,,: ρ , the agent r
only desires to do the task for at most the duration of the task ρ . Thus, we have

()[]()ρ,, rDotDuring D where ()[]ρ,rDo is the time interval for r performing the task. This
assumption applies to all BDI states related to performing a task. On the other hand, when a
negation of performing a task is involved, such as ()()Dr trDoDD ,,: ρ¬ , the agent cannot rely on

()[]ρ,rDo to quantify Dt . In our design, instead of making Dt a moment or a point, we let it be
until terminated by another assertion/proposition (e.g., generated by a later coalition process).
These assumptions allow an agent to negotiate regarding the same task at two different times as
long as the task negotiated first has completed since the BDI states of performing a task are self-
terminating and those of not performing a task are terminated by assertions generated by other
agent activities.

Finally, we have to deal with arguments since our negotiation approach is argumentation-based.
Suppose the request is for the responding agent r to perform the task ρ : ()ρ,rDo . The
responding agent has a set of internal arguments, rΓ , for and against performing the task. If the
agent believes it can perform the task but rΓ ⊭ ()()Dr trDoD ,, ρ (meaning the arguments do not
support the desire for performing the task), then it has to rely on the initiating agent for more
arguments. The initiating agent has its own set of arguments, iΓ , for the responding agent
performing the task. The underlying approach is to send over a subset iΓ′ of iΓ to the responding
agent until

ir Γ′∪Γ ⊨ ()()Dr trDoD ,, ρ (in which case the negotiation succeeds),

or until

ir Γ∪Γ ⊭ ()()Dr trDoD ,, ρ (in which case the negotiation fails),

where ii Γ⊆Γ′ is the set of arguments already communicated to the responding agent from the
initiating agent. This assumption is a critical element in our negotiation protocol as it facilitates
a stepwise evaluation of arguments to move closer to a conclusion of the negotiation.

2.4.1. Initiating Behavior

Here we outline the axioms that link an agent’s communication and its internal states for
conducting negotiations as an initiating agent.

Initiate. When an initiating agent (i) believes that it intends to negotiate with the responding

agent (r) to perform a task ρ , it initiates a negotiation request to the responding agent.

13

()()() ()()initiatecoutoutIi trDoriinitiateCtrDorNegotiateII ,,,,,:,,,: ρρ ⇒

where ()Iinitiatecout ttDuring ,, . The predicate initiate encapsulates the act of composing an
INITIATE-type message and sending the message to agent r.

Failure 1. When an initiating agent (i) receives a NO_GO message from a responding agent (r),

it believes that the responding agent r cannot perform the requested task ρ and stops
intending r to perform the task.

()() ()()()

()()() ()()
()() rejectedtrDoDD

trCanDoBBtrDorNegotiateII

trDorNegotiateIItrDoirgonoC

Di

BiIi

Iigonocinin

∧¬
∧¬∧′¬

⇒∧

,,:
,,:,,,:

,,,:,,,,_: _,

ρ
ρρ

ρρ

where () () () ()DBBIIIIgonocin ttStartsttMeetsttMeetsttDuring ,,,,_, ∧∧′∧ . The no_go communicative act
is the encapsulation of receiving and parsing a NO_GO (an outright refusal to negotiate)
message. This rule allows an agent to move on to the next neighbor after the responding agent
has outright refused to negotiate. This is real-time motivated: instead of trying to come up with a
lesser task and trying to establish a negotiation with the responding agent, the initiating agent
simply gives up and shifts its focus to other neighbors. The proposition rejected indicates the
failure of a negotiation.

Note also that in the above rule, the changes in the internal states of the agent are triggered by
the incoming message. This is one of our design characteristics and goals: agents communicate
only when necessary since the environment is real-time and resource constrained, and
information is exchanged only during negotiation.

Success 1. When an initiating agent (i) receives an AGREE message from a responding agent

(r), it believes that the responding agent r intends to perform and will perform the
requested task ρ .

()() ()()()

()()() ()()() ()() successtrDoDDtrDorNegotiateIItrDoDBB

trDorNegotiateIItrDoiragreeC

DiIiBri

Iiagreecinin

∧¬∧′¬∧

⇒∧

,,:,,,:,,:

,,,:,,,,: ,

ρρρ

ρρ

where () () () ()DBBIIIIagreecin ttStartsttMeetsttMeetsttDuring ,,,,, ∧∧′∧ . The agree communicative act is
the encapsulation of receiving and parsing an AGREE message. In this axiom, if an agent
receives an AGREE message from the responding agent, then (1) it believes that the responding
agent desires to perform the task, (2) it intends no longer to negotiate, and (3) it desires no longer
that the responding agent perform the task. This third desire may seem counter-intuitive at first
glance. Its purpose is to say “If I believe that you have the desire to do the task, then I don’t
have to desire you to do the task anymore,” and that does not prevent the agent to desire the
responding agent to perform the task in the future. The proposition success indicates the success
of a negotiation.

Info 1. When an initiating agent (i) receives a RESPOND message from a responding agent (r),

it (1) believes that the responding agent r intends to negotiate and (2) intends to obtain a

14

successful negotiation. Consequently, the initiating agent i intends to help r to desire to
perform the task by supplying available necessary information.

()() ()()() ()()()()

()()()() () ()()infocoutoutiiIi

BriIirespondcinin

trDoriinfoCppptrDorNegotiatesucceedII

trDoiNegotiateIBBtrDorNegotiateIItrDoirrespondC

,

,

,,,,::,,,:

,,,:,,,:,,,,:

ρρ

ρρρ

⇒Γ′∉∧Γ∈∃∧′∧

∧∧

where

() () () () ()infocoutrespondcinIinfocoutIBIIIrespondcin ttBeforettStartsttEqualsttFinishesttDuring ,,,, ,,,,, ∧′∧′∧′∧ .

The communicative act respond is the encapsulation of receiving and parsing a RESPOND
message, and the communicative act info is the encapsulation of composing and sending an
INFO message, including selecting a p from the set of arguments, iΓ , that is not a member the
set of arguments already sent, iΓ′ to r. Clause 1 of the axiom explicitly derives the motivation
for the initiating agent to continue negotiating as it intends to have a successful negotiation since
it now believes that the responding agent intends to negotiate as well. Clause 2 of the axiom
drives the agent to send over more arguments to help bring a successful conclusion to the
negotiation.

Info_null 1. When an initiating agent (i) receives a RESPOND message from a responding agent

(r), it (1) believes that the responding agent r intends to negotiate and (2) intends to
obtain a successful negotiation. However, if i has run out of information or arguments,
then it notifies r that it can no longer provide arguments.

()() ()()() ()()()()

()()()() () ()()nullinfocoutoutiiIi

BriIirespondcinin

trDorinullinfoCppptrDorNegotiatesucceedII

trDoiNegotiateIBBtrDorNegotiateIItrDoirrespondC

_,

,

,,,,_::,,,:

,,,:,,,:,,,,:

ρρ

ρρρ

⇒Γ′∉∧Γ∈∃∧′∧

∧∧

where

() () () () ()nullinfocoutrespondcinInullinfocoutIBIIIrespondcin ttBeforettStartsttEqualsttFinishesttDuring _,,_,, ,,,,, ∧′∧′∧′∧ .

This rule is the counterpart to Info 1 previously discussed. When an agent runs out of
arguments, it notifies the responding agent about it. Instead of giving up on the negotiation right
away—since obviously the initiating agent knows that it has not been able to persuade the
responding agent and now it has run out of arguments, the initiating agent informs the
responding agent of its situation and hopefully the responding agent will be able to counter-offer.
So, in a way, this shifts the responsibility of achieving a successful negotiation to the responding
agent from the initiating agent. Up until this point, the initiating agent has been responsible for
keeping the negotiation going by supplying arguments/information to the responding agent,
trying to convince it. Finally when the initiating agent can argue no further, the decision shifts to
the responding agent.

Info 2. When an initiating agent (i) receives a MORE_INFO message from a responding agent

(r), it simply supplies more unused arguments.

15

()() ()()()()
() ()()infocoutouti

Iimore_infocinin

trDoriinfoCppp

trDorNegotiatesucceedIItrDoirinfomoreC

,

,

,,,,::

,,,:,,,,_:

ρ

ρρ

⇒Γ′∉∧Γ∈∃∧

′∧

where () () ()infocoutinfomorecinIinfocoutIinfomorecin ttBeforettDuringttDuring ,_,,_, ,,, ∧′∧′ . This axiom is similar to
Info 1.

Info_null 2. When an initiating agent (i) receives a MORE_INFO message from a responding

agent (r), if it does not have any more arguments, then it notifies r of its status.

()() ()()()()
() ()()nullinfocoutoutii

Iimore_infocinin

trDorinullinfoCppp

trDorNegotiatesucceedIItrDoirinfomoreC

_,

,

,,,,_::

,,,:,,,,_:

ρ

ρρ

⇒Γ′∉∧Γ∈¬∃∧

′∧

where () () ()nullinfocoutinfomorecinInullinfocoutIinfomorecin ttBeforettDuringttDuring _,_,_,_, ,,, ∧′∧′ . This axiom is
similar to Info_null 1.

Info 3. When an initiating agent (i) receives a counter-offer (ρ′) from a responding agent (r), i

believes that r desires to perform ρ′ . However, if ρ′ is not acceptable, then the agent i
continues to send unused arguments to r.

()() ()()() ()()

() ()()()() ()()infocoutoutIiii

BiBricountercinin

trDoriinfoCtrDorNegotiatesucceedIIppp

tacceptableBBtrDoDBBtrDoircounterC

,

,

,,,,:,,,::

,:,,:,,,,:

ρρ

ρρρ

⇒′∧Γ′∉∧Γ∈∃∧

′′¬∧′∧

where

() () ()
() () ()IinfocoutinfocoutBBB

IBBcountercinIcountercin

ttDuringttMeetsttFinishes

ttDuringttMeetsttDuring
′∧∧′∧

′′∧∧′

,,,

,,,

,,

,, .

This axiom is similar to Info 1. The communicative act counter is the encapsulation of receiving
and parsing a COUNTER-type message, in which contents holds the counter-offer ρ′ . Clause
1 states that when an initiating agent receives a counter-offer from the responding agent, it
believes that the responding agent desires to perform the counter-offer. Now, the initiating agent
checks the acceptability of the counter-offer. If the counter-offer is not acceptable and the agent
still has unused arguments, then it sends over more arguments. This is how an initiating agent
counter-offers a counter-offer: sending over more arguments in hope that the responding agent
will come back with a better counter-offer, closer to the original request.

Note also the temporal relationships among infocoutt , , Bt , and Bt ′ . As soon as the initiating agent
realizes that the counter-offer is not acceptable, both its beliefs that the responding agent desires
to perform the counter-offer and that the counter-offer is unacceptable terminate and trigger the
communicative act info. In other words, when the initiating agent counters a counter-offer, all
beliefs regarding the counter-offer no longer hold.

Info_null 3. When an initiating agent (i) receives a counter-offer (ρ′) from a responding agent

(r), i believes that r desires to perform ρ′ . However, if ρ′ is not acceptable and the

16

agent does not have any more unused arguments, it notifies r that it can no longer provide
arguments.

()() ()()() ()()

() ()()()() ()()nullinfocoutoutIiii

BiBricountercinin

trDorinullinfoCtrDorNegotiatesucceedIIppp

tacceptableBBtrDoDBBtrDoircounterC

_,

,

,,,,_:,,,::

,:,,:,,,,:

ρρ

ρρρ

⇒′∧Γ′∉∧Γ∈¬∃

∧′′¬∧′∧

where

() () ()
() () ()InullinfocoutnullinfocoutBBB

IBBcountercinIcountercin

ttDuringttMeetsttFinishes

ttDuringttMeetsttDuring
′∧∧′∧

′′∧∧′

,,,

,,,

,,

,, .

This axiom is the counterpart of Info 3.

Success 2. When an initiating agent (i) receives a counter-offer (ρ′) from a responding agent (r),

i believes that r desires to perform ρ′ . If ρ′ is acceptable, then i agrees.

()() ()()()
()() ()()()()

()() ()() ()()
()()() ()()()() successtrDorNegotiatesucceedIItrDorNegotiateII

trDoDDtrCanDoBBtrDoriagreeC
trDorNegotiatesucceedIItacceptableBB

trDoDBBtrDoircounterC

IiIi

DiBiagreecoutout

IiBi

Bricountercinin

∧′′¬∧′′¬

∧¬∧′′¬∧⇒

′∧′′∧

′∧

,,,:,,,:

,,:,,:,,,,:
,,,:,:

,,:,,,,:

,

,

ρρ

ρρρ
ρρ

ρρ

where

() () () ()
() () () ()IagreecoutIDBBII

agreecoutBBBIBIcountercin

ttDuringttStartsttMeetsttMeets

ttMeetsttFinishesttDuringttDuring
′′∧′′∧′′∧′′′∧

∧′∧′′∧′

,,,,

,,,,

,

,, .

The communicative act agree is the encapsulation of composing and sending an AGREE
message, in which contents holds the counter-offer ρ′ . With this axiom, as soon as the
initiating agent agrees to a counter-offer by the responding agent, it (1) believes that the
responding agent cannot do the originally requested task, (2) desires no longer that the
responding agent performs the task, (3) intends to negotiate no further regarding the task, and (4)
intends no longer to have a successful negotiation regarding the task. However, the negotiation
still ends with a success tag because even though the initiating agent does not get what it wanted
originally, it does obtain a portion of its original request; hence it is a partial success.

Failure 2. When an initiating agent (i) receives a STOP message from a responding agent (r), it

believes that the responding agent r does not desire to perform the requested task ρ and
thus stops negotiating with r to perform the task, and the negotiation fails.

()() ()()()()

()() ()() ()()()
()()()() rejectedtrDorNegotiatesucceedII

trDorNegotiateIItrDoDDtrCanDoBB

trDorNegotiatesucceedIItrDoirstopC

Ii

IiDiBi

Iistopcinin

∧′′¬
∧′′¬∧¬∧¬

⇒′∧

,,,:
,,,:,,:,,:

,,,:,,,,: ,

ρ
ρρρ

ρρ

where () () () ()IIDIBIIstopcin ttMeetsttMeetsttMeetsttDuring ′′′∧′∧′∧′ ,,,,, . The communicative act stop is the
encapsulation of receiving and parsing a STOP message. This rule is similar to Failure 1. In

17

addition, it also states that the agent intends to not negotiate. In our current design we do not
differentiate between an outright failure (failure type 1) and an opt-out failure (failure type 2)—
both end with a rejected tag.

Failure 3I. This rule is similar to Failure 2 except for that it deals with an ABORT message and

ends with an abort tag.

Failure 4I. This rule is similar to Failure 2 except for that it deals with an OUT_OF_TIME

message and ends with an out_of_time tag.

Abort I. When an initiating agent (i) no longer intends to negotiate with a responding agent (r)

to perform a requested task ρ , it aborts the negotiation.

()()() ()()
()() ()()()() aborttrDorNegotiatesucceedIItrDoDD

trDoriabortCtrDorNegotiateII

IiDi

abortcoutoutIi

∧′′¬∧¬

∧⇒′¬

,,,:,,:
,,,,:,,,: ,

ρρ

ρρ

where () () () ()IIIabortcoutDabortcoutIabortcout ttFinishesttDuringttDuringttDuring ′′′∧′′∧∧′ ,,,, ,,, . The
communicative act abort is the encapsulation of composing and sending an ABORT message.
This rule says that if an initiating agent aborts a negotiation, then it informs the responding
agent.

Out_of_time I. When an initiating agent (i) runs out of its allocated time for the negotiation

with a responding agent (r) to perform a requested task ρ , it aborts the negotiation.

()()()() ()()()()
()() ()()()

()()()() timeofouttrDorNegotiatesucceedII

trDorNegotiateIItrDoritimeofoutC
trDorNegotiatesucceedIItrDorNegotiatetimeBB

Ii

Iitimeofoutcoutout

IiBi

__,,,:

,,,:,,,,__:
,,,:,,,:

__,

∧′′¬

∧′′¬∧
⇒′∧¬

ρ

ρρ
ρρ

where () () ()IIItimeofoutcoutIB ttMeetsttDuringttDuring ′′′∧′′∧′ ,,, __, . The time predicate encapsulates the
acts of obtaining and comparing the time elapsed for the negotiation against the time allocated
for the negotiation. The communicative act out_of_time predicate is the encapsulation of
composing and sending an OUT_OF_TIME message to the responding agent. This rule states
that when the agent has run out of time allocated for the negotiation, it no longer intends to
negotiate. This is real-time motivated.

No_response I. When an initiating agent (i) detects receives no response from a responding

agent (r) during a negotiation, then it unilaterally quits the negotiation with a failure.

()() ()()()()
()()() ()()()() jammedchanneltrDorNegotiatesucceedIItrDorNegotiateII

trDorNegotiatesucceedIItrresponsenoBB

IiIi

IiBi

_,,,:,,,:
,,,:,_:
∧′′¬∧′′¬

⇒′∧
ρρ

ρ

where () ()IIIB ttMeetsttDuring ′′′∧′ ,, . The no_response predicate is one of our real-time enabling
functional predicates to be discussed next. This axiom allows an agent to bail out of a
negotiation when the negotiation partner fails to respond.

18

Figure 2 shows the time lines of the initiating agent’s behavior when faced with an outright
rejection or agreement. These are the simple cases of the axioms above. The length of the
process is based on initiatecoutt , , gonocint _, , and agreecint , . During such time,

()()()Ii trDorNegotiateII ,,,: ρ holds true. After that, the intention can be removed or modified.

Figure 2 (a) Outright rejection and (b) outright agreement, from the initiating agent’s point of view.

Figure 3 shows the negotiation process, from the initiating agent’s point of view once the
responding agent agrees to negotiate. The negotiation process is a manifestation of the axioms
discussed above, proving a flow of communicative acts and BDI states that drives the completion
of the negotiation. It is with the temporal BDI axioms that we are able to produce Figure 4, an
explicit outline of the interactions of the communicative acts with various BDI states—
specifying when and how long certain states must hold true, cannot be modified, can change, can
be accessed, or are of no concern. It is also through the axioms that we are able to guarantee the
completion of a negotiation process within a certain time. For example, if the initiating agent
goes through the following steps: initiate, parse respond, info, parse more_info, info, parse
more_info, info_null, parse counter, check to see whether the counter-offer is acceptable, and
agree, then we know how much time it takes to do so by summing up the temporal intervals
associated with each step. The acceptability of the counter-offer has to be held constant
throughout the agreement step. This explicit declaration of time constraints is important since
each of our agents is multi-threaded, where several threads may access and need to modify the
same variable at the same time. Without the axioms, a variable such as the acceptability of the
counter-offer might accidentally be modified by another negotiation thread, rendering the current
negotiation process ambiguous. Moreover, with the temporal intervals, we are able to fine-tune
the system by observing the time usage of each communicative act for speedup. For example,
with the BDI states, we know the minimal time we need to hold the value of a variable constant.
The shorter the time needed for a variable to be held constant, the more frequent the variable can
be updated and accessed, allowing other threads to proceed.

19

Figure 3 Negotiation from the initiating agent’s point of view (a simplified version). Temporal intervals in

brackets are options. Note that once the initiating agent receives a RESPOND message from the responding
agent, it is committed to negotiate successfully since it believes that the responding agent desires to negotiate.

2.4.2. Responding Behavior
Here we outline axioms that link an agent’s communication and its internal states for conducting
negotiations as a responding agent.

No_go. When a responding agent (r) believes that it cannot perform a requested task ρ from an

initiating agent i, it outright refuses to negotiate.

()() ()()
()() exittrDoirgonoC

trCanDoBBtrDoriinitiateC

gonocoutout

Brinitiatecinin

∧

⇒¬∧

_,

,

,,,,_:
,,:,,,,:

ρ

ρρ

where () ()BgonocoutBinitiatecin ttDuringttMeets ,, _,, ∧ . The communicative act no_go encapsulates the act
of composing a NO_GO message and sending the message to agent i. Agents are responsible in
that if a responding agent refuses to negotiate, it informs the initiating agent.

Agree 1. When a responding agent (r) (1) believes that it is already performing a requested task

ρ or (2) desires to perform ρ , it agrees to perform the task.

20

()() ()() ()()()
()() ()() successtrDoDDtrDoiragreeC

trDoDDtrDoingBBtrDoriinitiateC

Dragreecoutout

DrBrinitiatecinin

∧′∧⇒

∨∧

,,:,,,,:
,,:,,:,,,,:

,

,

ρρ

ρρρ

where

() () () ()()
() () () ()()DDDagreecoutagreecoutinitiatecinDinitiatecin

DagreecoutBagreecoutagreecoutinitiatecinBinitiatecin

ttMeetsttFinishesttBeforettOverlaps

ttMeetsttDuringttBeforettOverlaps
′∧∧∧∨

′∧∧∧

,,,,

,,,,

,,,,

,,,,, .

The communicative act agree encapsulates the acts of composing an AGREE message and
sending the message to the initiating agent. The rule strengthens the desire of the agent to
continue performing the task. As previously discussed, an agent may be still performing a task
while it no longer desires to do so because a task may be atomic and non-interruptible. So, when
the responding agent realizes the initiating agent requests for the same task to be performed, then
it re-asserts its desire to ensure the continuation of the task. We also use the relation ()DD ttMeets ′,
to transition the desire—extending the period of time for the responding agent’s desire to
perform the task.

Note also that with this rule, the responding agent agrees to help only because it is already
performing the task, but the agree predicate does not reveal that to the initiating agent. This
simplifies our agent design in two ways: (1) the responding agent does not have to explain to the
initiating agent why it agrees to perform a requested task, and (2) the initiating agent does not
have to remember why the responding agent agreed to a requested task.

Respond. When a responding agent (r) believes that it can perform a requested task ρ , and

there is no desire to perform ρ nor belief that it is performing ρ , it responds to the
negotiation request, i.e., it agrees to negotiate.

()() ()() ()()

()() ()()
()()() ()()()()IrIr

respondcoutoutBr

DrBrinitiatecinin

trDoiNegotiatesucceedIItrDoiNegotiateII

trDoirrespondCtrDoingBB
trDoDDtrCanDoBBtrDoriinitiateC

′∧

∧⇒′¬∃

∧¬∃∧∧

,,,:,,,:

,,,,:,,:
,,:,,:,,,,:

,

,

ρρ

ρρ

ρρρ

where

() () () ()
() () () ()respondcoutinitiatecinIIIrespondcoutIrespondcout

BrespondcoutBBDBBinitiatecin

ttBeforettFinishesttMeetsttMeets

ttDuringttDuringttDuringttMeets

,,,,

,,

,,,,

,,,,

∧′∧′∧

∧∧′∧∧
.

The communicative act respond encapsulates the acts of composing a RESPOND message and
sending the message to the initiating agent. If the responding agent believes it can perform the
task, and yet it currently does not have a desire to do so, and does not believe it is performing the
task, then it decides to negotiate. Note that the implicit social behavior of the agents is at play
here: because of the cooperativeness of the agent, it intends to negotiate and intends to negotiate
successfully. These two intentions motivate the responding agent to continue negotiating.

More_info. When a responding agent (r) receives arguments from an initiating agent (i) for a

requested task ρ , it processes the arguments to update evidence support for the task. If

21

the support is still lacking, and the negotiation is on time or the task is discrete, then it
asks for more arguments.

()() ()()()() ()()

()() ()()()() ()()()
()()infomorecoutout

BrBrDr

IirIrinfocinin

trDoirinfomoreC
tdiscreteBBtrDoiNegotiateslowBBtrDoDD

tupdateIItrDoiNegotiatesucceedIItrDoriinfoC

_,

,

,,,,_:
,:,,,:,,:

,:,,,:,,,,:

ρ
ρρρ

ρρ

⇒

′∨¬∧¬∃

∧′′Γ′∧′∧

where

() () () () ()
() () () ()infomorecoutinfocinDinfomorecoutBDBD

IDDIIIIinfocinIinfocin

ttBeforettDuringttDuringttDuring

ttDuringttMeetsttDuringttDuringttMeets

,,,

,,

,,,,

,,,,,

∧∧′∧∧

′∧′′∧′′′∧′∧′′
.

Auxiliary to More_info. The action update examines the arguments collected, iΓ′ during evidencet

where ()Ievidence ttFinishes ′′, , to see if the proposition ri Γ∪Γ′ ⊨ ()()Dr trDoDD ,,: ρ . If so, then
()()Dr trDoDD ,,: ρ where ()DI ttMeets ,′′ .

First, the communicative act info encapsulates the actions of receiving and parsing an INFO-type
message from the initiating agent, in which the contents holds the arguments ip Γ∈ during commt
and ip Γ′∉ during commt where ()infocincomm ttBefore ,, . The responding agent then examines the
arguments by invoking the predicate update. Since update is an action, it is self-terminating and

()[]()iI updatetEqual Γ′′′ , . If the arguments are sufficient, then update results in ()()Dr trDoDD ,,: ρ ;
otherwise, the negotiation continues. If at the meantime the agent believes that the pace of the
negotiation is not slow or that the task is discrete, then it continues to ask for more information
from the initiating agent. Note that in our protocol, a responding agent can only make a counter-
offer when the requested task is non-discrete. There are two conditions that prompt a responding
agent to counter-offer: (1) when the initiating agent does not have any more arguments (as
discussed later), or (2) when the pace of the negotiation is slow. The predicate slow measures
the pace of a negotiation. The predicates update, slow, and discrete are part of our real-time
enabling functional predicates and will be discussed next.

Agree 2. When a responding agent (r) receives arguments from an initiating agent (i) for a

requested task ρ , it processes the arguments to update evidence support for the task. If
the support is enough, then it agrees to perform ρ .

()() ()()()()

()() ()() ()()
()()() ()()()() successtrDoiNegotiatesucceedIItrDoiNegotiateII

trDoiragreeCtrDoDDtupdateII

trDoiNegotiatesucceedIItrDoriinfoC

IiIi

agreecoutoutDrIir

Irinfocinin

∧′′′¬∧′′′¬

∧⇒∧′′Γ′

∧′∧

,,,:,,,:

,,,,:,,:,:

,,,:,,,,:

,

,

ρρ

ρρ

ρρ

where

() () () ()
() () () ()IIIagreecoutDagreecoutID

DIIIIinfocinIinfocin

ttMeetsttDuringttDuringttDuring

ttMeetsttDuringttDuringttMeets
′′′′∧′′′∧∧′

∧′′∧′′′∧′∧′′

,,,,

,,,,

,,

,, .

22

This axiom is a counterpart of More_info. If it turns out that the arguments are sufficient, then
the responding agent agrees to the request. It uses the communicative act agree to compose and
send an AGREE-type message to the initiating agent. The negotiation ends with a success tag.
Also, the agent also stops intending to negotiate and to negotiate successfully.

Counter 1. When a responding agent (r) receives arguments from an initiating agent (i) for a

requested task ρ , it processes the arguments to update evidence support for the task. If
the support is not enough, the pace of the negotiation is slow, and ρ involves non-
discrete resource, then r makes a counter-offer (ρ′).

()() ()()()()

()() ()() ()()()()
()() ()()countercoutoutBr

BrDrIir

Irinfocinin

trDoircounterCtdiscreteBB
trDoiNegotiateslowBBtrDoDDtupdateII

trDoiNegotiatesucceedIItrDoriinfoC

,

,

,,,,:,:
,,,:,,:,:

,,,:,,,,:

ρρ
ρρ

ρρ

⇒′¬
∧∧¬∃∧′′Γ′

∧′∧

where

() () () ()
() () () ()DcountercoutBDBDID

DIIIIinfocinIinfocin

ttDuringttFinishesttFinishesttDuring

ttMeetsttDuringttDuringttMeets

,,,,

,,,,

,

,,

∧′∧∧′

∧′′∧′′′∧′∧′′
.

The communicative act counter encapsulates the acts of finding a counter-offer (ρ′), composing
a COUNTER-type message, and sending the message to the initiating agent. The counter-offer
ρ′ is stored in the contents of the message. This is a companion rule to More_info as discussed
above. If the negotiation is off pace, then instead of asking for more information/arguments, the
responding agent counter-offers. This is motivated by the intention of the agent to achieve a
successful outcome to the negotiation. However, if the task involves a discrete resource, then a
counter-offer is impossible and the More_info rule overwrites the Counter 1 rule. Further, even
though the responding agent makes a counter-offer, it does not have the desire to perform the
task counter-offered. It only has the desire to do so after the initiating agent agrees to it. This is
represented later in axiom Success 3.

Note that the motivation behind a counter-offer is to speed up the pace of the negotiation or as a
last-ditch effort to salvage a failing negotiation. We do not perform counter-offer as part of the
normal interaction—to evaluate and re-plan proposals at each negotiation step would have
slowed down our negotiations and that is not applicable to a real-time problem.

Stop. When a responding agent (r) is notified by an initiating agent (i) that it has no more

arguments for a requested task ρ , and the task is discrete, the agent r stops the
negotiation, and the negotiation fails.

()() ()()()()
()()()() ()() ()()

()() ()()()
()()()() stoptrDoiNegotiatesucceedII

trDoiNegotiateIItrDoirstopC
tdiscreteBBtrDoDDtrDoupdateII

trDoiNegotiatesucceedIItrDorinullinfoC

Ir

Irstopcoutout

BrDrIir

Irnullinfocinin

∧′′′¬

∧′′′¬∧⇒

′∧¬∃∧′′Γ′

∧′∧

,,,:

,,,:,,,,:
,:,,:,,:

,,,:,,,,_:

,

_,

ρ

ρρ
ρρρ

ρρ

where

23

() () () () ()
() () () () ()IstopcoutIIDstopcoutBDBD

IDDIIIInullinfocinInullinfocin

ttStartsttMeetsttDuringttFinishesttFinishes

ttDuringttMeetsttDuringttDuringttMeets
′′′∧′′′′∧∧′∧∧

′∧′′∧′′′∧′∧′′

,,,,,

,,,,,

,,

,, .

The communicative act info_null is the encapsulation of receiving and parsing an INFO_NULL-
type message from the initiating agent, while the communicative act stop encapsulates the
actions of composing a STOP-type message and sending the message to the initiating agent.
This is when the responding agent gives up on the negotiation, after being informed that no more
arguments are on the way. As a result, it no longer intends to negotiate, and it opts out by
informing the initiating agent as a responsible gesture. The proposition stop indicates the failure
of a negotiation because the responding agent is not convinced to perform the requested task.

Counter 2. When a responding agent (r) is notified by an initiating agent (i) that it has no more

arguments for a requested task ρ , and the task is discrete, the agent r makes a counter-
offer (ρ′).

()() ()()()()

()() ()() ()()
()()countercoutout

BrDrIir

Irnullinfocinin

trDoircounterC
tdiscreteBBtrDoDDtupdateII

trDoiNegotiatesucceedIItrDorinullinfoC

,

_,

,,,,:
,:,,:,:

,,,:,,,,_:

ρ
ρρ

ρρ

⇒

′¬∧¬∃∧′′Γ′

∧′∧

where

() () () ()
() () () ()DcountercoutBDBDID

DIIIIinfocinIinfocin

ttDuringttFinishesttFinishesttDuring

ttMeetsttDuringttDuringttMeets

,,,,

,,,,

,

,,

∧′∧∧′

∧′′∧′′′∧′∧′′
.

This axiom is a counterpart of Stop, and closely resembles Counter 1. Driven by the intention to
succeed in the negotiation, the responding agent, after being notified of no more arguments
coming in from the initiating agent, voluntarily makes a counter-offer if the task is non-discrete.

Failure 3R. This axiom is similar to Failure 3I.

Failure 4R. This axiom is similar to Failure 4I.

Abort R. This axiom is similar to Abort I.

Out_of_time R. This axiom is similar to Out_of_time I.

Success 3. When a responding agent (r) receives an AGREE message from an initiating agent

(i) to its counter-offer (ρ′), the responding agent desires to perform the counter-offer,
and the negotiation ends with success.

()() ()()()()

()() ()()()
()()()() successtrDoiNegotiatesucceedII

trDoiNegotiateIItrDoDD

trDoiNegotiatesucceedIItrDoriagreeC

Ii

IiDr

Iragreecinin

∧′′¬
∧′′¬∧′⇒

′∧

,,,:
,,,:,,:

,,,:,,,,: ,

ρ
ρρ

ρρ

24

where () () ()IIDIIagreecin ttMeetsttMeetsttFinishes ′′′∧′∧′ ,,,, . The communicative act agree predicate
encapsulates the acts of receiving and parsing an AGREE-type message, in which contents
holds the information regarding ρ′ . This rule says that if the initiating agent agrees to the
counter-offer, then the responding agent (1) desires to perform the counter-offered task and (2)
intends no longer to continue with the negotiation regarding the originally requested task.

No_response R. This is similar to No_response I.

Figure 4 shows the time lines of the initiating agent’s behavior when faced with an outright
rejection or agreement. These are the simple cases of the axioms above. See for example that
when the responding agent agrees to a request, it extends the desire to do the requested task.

Figure 4 (a) Outright rejection and (b) outright agreement, from the responding agent’s point of view.

Figure 5 shows the negotiation process, from the responding agent’s point of view once it agrees
to negotiate. Similar to Figure 3, Figure 5 allows us to explicitly describe the temporal
relationships among the BDI states and the communicative acts. That description, in turn, allows
us to guarantee the behavior of the negotiation and to fine-tune its efficiency.

Functional Predicates
In this section, we describe the functional predicates mentioned in the previous section that
present the logical framework for the rules of encounter between two agents. These predicates
are the infrastructure to our real-time negotiation protocol. To simplify the discussion, we have
touched upon 11 communicative acts such as initiate, respond, no_go, agree, etc. and six
negotiation-related functional predicates: slow, time, discrete, no_response, acceptable, and
update. Here we will elaborate further on the six predicates as they are an integral part that
enables the real-time negotiation between the agents.

25

Figure 5 Negotiation from the responding agent’s point of view (a simplified version). Temporal intervals under

brackets are options. Note that once the responding agent sends out a RESPOND message to the initiating
agent, it is committed to negotiate successfully.

slow
This predicate takes the form of ()actionslow , and given an action (or a task), it measures the pace
of the action and returns true or false. An action has two temporal intervals: the actual real-time
interval, []action , and the planned/predicted interval, action . Suppose that []action has a duration
between actionst , and actionft , , and the set of states as a result of the action is

{ }actionNactionaction ssS ,,0 ,,L= . Each state, actionns , , holds during an actual interval []actionns , such that
(1) [] []()actionsDuring actionn ,, , (2) [] []()actionnactionn ssOverlaps ,1, , + , and (3) the temporal interval of two
such states has a duration between the start of actionns , and the latest finish time of the two states,
[]actionnactionn ss ,1, + . Similarly, we can obtain actionnactionn ss ,1, +
 When ()actionslow is invoked, it retrieves the current state of the action, actionactioncurrent Ss ∈, .
If

[]
[] action

ss

action
ss actioncurrentactionactioncurrentaction ,,0,,0 >

is true, then ()actionslow returns true; otherwise, it returns false. Note that this predicate is binary
since we use it to trigger a counter_offer act. A more general approach is to use a degree of

26

slowness that would not only trigger a counter_offer but also dictate how conceding the
responding agent should be.

time
This predicate takes the form of ()actiontime and indicates whether an agent has run out of the
allocated time for the action. Suppose we have []action and action . When an agent invokes

()actiontime , the predicate measures the time elapsed so far, actionscurrentelapsed ttt ,−= . If

actiontelapsed ≥ , then ()actiontime returns true; otherwise it returns false.

discrete
A discrete task is when the task cannot be broken up or attenuated. For example, if the initiating
agent asks the responding agent to turn on a sensor, then the responding agent may only respond
with yes or no. However, if the initiating agent asks the responding agent to turn on a sensor in
five seconds, then the responding agent, in addition to yes or no, may also counter with “yes, but
in 10 seconds”. The introduction of the time factor makes the task a non-discrete one, allowing
the responding agent to counter-offer. In our negotiation protocol, a task ρ may be qualified by
time and resource amount. The predicate discrete returns true if both qualities are absent,
otherwise, it returns false. Note that we intentionally leave out the qualification of tasks to
simplify our discussion.

no_response
This predicate takes one argument—the agent from which the current agent is waiting for a
message. In general, when an agent i invokes ()rresponseno _ on another agent r, it is after agent i
has performed a communicative act, C. Hence, [] ()[]()rresponsenoCBefore _, . If agent i does not
receive a response in the interval windowt (and ()Iwindow ttDuring , given that the intention I is to
negotiate), then ()rresponseno _ returns true; otherwise, it returns false.

acceptable
This predicate is only invoked by an initiating agent, I, and takes as argument a task. Suppose
the agent i desires to achieve goal G. To achieve G, there is a set of subtasks

(){ }ρρρρρ rL
r

iC,,, 21= , and a coalition, ()ρriC , exists to distribute the subtasks among the coalition
members. As a result,

() ()()()DiiDi tCDoDtGD ,,, ρρ

rr
⇒ ,

where ()()() ()()
() () () 













 





= ρρρ

ρρρρ r
rrL

rr
iiCiC CDiDiDii trDoDtrDoDtCDoD ,,,,,,,, 111 . As the agent

progresses in real time, G may become G′ such that () ()()()DiiDi tCDoDtGD ′′′⇒′′ ,,, ρρ
rr where

()DD ttDuring ,′ . For example, an agent has received commitments for some negotiated resources,
so it no longer desires the original set of resources it asked for. So, when the initiating agent
receives a counter offer ρ′ from the responding agent, it invokes ()ρ ′acceptable to compare the
counter-offered task ρ′ with the corresponding rρ where ()()Dri trDoD ′′ ,, ρ . If rρρ ∈′ then

()ρ′acceptable returns true; otherwise, it returns false.

27

update
This functional predicate is invoked only by a responding agent r, as previously mentioned in an
auxiliary to the More_info axiom.

2.5. Implementation
The driving application for our system is multisensor target tracking, a distributed resource
allocation and constraint satisfaction problem. The objective is to track as many targets as
possible and as accurately as possible using a network of sensors. Each sensor has a set of
consumable resources, such as beam-seconds (the amount of time a sensor is active), battery
power, and communication channels, that each sensor desires to utilize efficiently. Each sensor
is at a fixed physical location and, as a target passes through its coverage area, it has to cooperate
with neighboring sensors to triangulate their measurements to obtain an accurate estimate of the
position and velocity of the target. As more targets appear in the environment, the sensors need
to decide which ones to track, when to track them, and when not to track them, always being
aware of the status and usage of sensor resources. Each sensor can at any time scan one of three
sectors, each covering a 120-degree swath. Sensors are connected to a network of CPU
platforms on which the agents controlling each sensor reside. The physical sensors are 9.35 GHz
Doppler MTI radars that communicate using a 900 MHz wireless, radio-frequency (RF)
transmitter. The agents (and sensors) must communicate over an eight-channel RF link, leading
to potential channel jamming and lost messages. Our agents may reside on the same CPU
platform or different platforms.

We have implemented our multiagent system in C++. Each agent has 3+n threads: (1) a core
thread that performs the reasoning, message checking, task handling chores of the agent and thus
is always active, (2) a communication thread that is responsible for polling for incoming
messages and sending out messages and thus is always active, (3) an execution thread that
performs sensor-related tasks such as calibration, target searching, and tracking, and thus is
sometimes active and sometimes dormant, and (4) n negotiation threads that each waits to be
awaken to perform a negotiation and goes back to a dormant state after the negotiation is over.
This setup allows an agent to carry out various lines of tasks concurrently. It also allows an
agent to conduct multiple negotiations in parallel. Each negotiation thread can be an initiating
thread or a responding thread, depending on the dynamic, real-time instructions given by the
core thread.

The architecture of our agents is able to detect a target, forms a coalition, performs CBR to
determine its negotiation strategy, initiates or responds to negotiations, argues to persuade its
partner to perform a task or reasons to whether to agree to perform a task, monitors its own
status such as its sensor, noise, tasks, and CPU resource usage, interacts with either a software
simulation or the actual physical hardware setup, and obtains real-time data from the operating
system supporting its execution. More importantly, each agent is autonomous and can sense and
react to real-time events in the environment. Moreover, there is no hierarchy within the
multiagent system—all agents are peers.

We have also implemented the complete real-time argumentative negotiation protocol in the
negotiator module of an agent. With the formalisms encoded, the negotiator conducts a

28

negotiation with high efficiency and autonomy. We have implemented all communicative acts:
parsing messages and converting them to belief states and converting belief states and
composing messages out of them. We have also implemented the belief, desire, and intention
states as functions, procedures, and clauses. As for the temporal definitions and constraints of
those states, we have implemented recursive mutexes (semaphore-like designs) to manage
read/write accesses: when to acquire the value of a state, when to release a lock on the value of a
state, when must a state be ready in order for a certain task to start, and so on. For example, an
agent may be tracking a target and negotiating at the same time. While tracking, the agent may
realize that the target is no longer visible. This directly affects the on-going negotiation since
now the agent’s sensor has become available, leading to a lower threshold, for example, of a
counter-offer. But, the negotiator module of a negotiation thread cannot afford to constantly
check the states of the tracking. It does so occasionally and only when it is necessary, and can
only be interrupted at certain points over the course of the negotiation, dictated by the temporal
definitions of the states.

2.5.1. Real-Time Scheduling Service (RTSS)
We have implemented a Real-Time Scheduling Service (RTSS) in ‘C’, on top of the KU Real-
Time system (KURT) (Srinivasan et al., 1998) that adds real-time functionality to Linux. First,
the RTSS provides an interface between the agents and the system timers, allowing agents to: (1)
query the operating system about the current time; (2) ask the RTSS to notify them after the
passage of certain length of time; and (3) ask the RTSS to ping them at fixed time intervals. This
allows agents to know when to, for example, conclude a negotiation process or turn on a radar
sector. Second, the agents may ask the RTSS to notify them when certain system-level events
occur, such as process threads being activated, or communication messages going out or coming
into the system. Third, the agents can ask the RTSS to allocate them a percentage of the CPU for
each one of their threads (such as the ones controlling the radar and tracking or the ones used in
negotiations) and to schedule this allocation within an interval of time. This RTSS allows an
agent to monitor the progress of its own negotiations and the usage status of its allocated CPU
resource.

2.5.2. Case-Based Argumentative Negotiation
We have implemented the CBR Manager to maintain the case base of an agent. The
implementation includes similarity-based retrieval, both difference- and outcome-driven
adaptations, and the incremental and refinement learning. We have implemented the entire
negotiation protocol, as depicted in Figure 1, into each negotiation thread. Each thread is
capable of monitoring the pace of its own negotiation, retrieving messages via the
communication thread, parsing incoming messages, making decisions and reasoning, composing
an outgoing message and sending messages via the communication thread. Each thread is
autonomous in a way that the core thread of the agent does not have to tell the thread how to
conduct a negotiation once it has gotten underway.

Each thread forks off a child process that automatically invokes CLIPS. The communication
between a negotiation thread and its child CLIPS process is through pipes. After receiving an
acknowledge signal from the CLIPS child process, the negotiation thread informs the core thread
that it is ready to accept a negotiation task and waits. When it finally receives an activation
signal, the negotiation thread downloads the relevant information regarding the negotiation task.
From the information, the thread decides its identity—either an initiating thread or a responding

29

thread. Then the negotiation thread negotiates following the negotiation protocol described in
Section 3. Once the negotiation is done, the thread updates its status and waits for a signal from
the core thread before resetting itself for the next negotiation task. Meanwhile, the core thread of
the agent periodically checks the status of the active negotiation threads. If a negotiation is
completed, the core thread downloads the updated data and signals the negotiation thread that it
is okay to reset.

Here we briefly discuss our case-based strategy selection approach. A negotiation strategy
dictates a set of tactics for a negotiation. For example, an initiating agent needs to know which
arguments are more important to send over first to the responding agent. We use case-based
reasoning (CBR) to help us determine that. When an agent encounters a negotiation problem, it
searches its casebase for the most similar case, in which the problem description in that case
resembles the current negotiation problem. Then, based on the differences between the two
problem descriptions, the CBR module of the agent performs an adaptation on the solution. The
modified solution becomes the negotiation strategy.

2.5.3. Real-Time Enabling Functional Predicates
In Section 3.4, we presented the logical model of our real-time enabling functional predicates.
Here, we describe the implementation that, even though is domain- and application-specific, may
serve as a useful example to other designs of the predicates. In this section, we also describe
how our agents make a counter-offer in real-time. Note that in our implementation, we employ
case-based reasoning to derive a negotiation strategy for an agent for each negotiation task. A
case has a set of belief states (situated input parameters), a set of desires (a parametric
negotiation strategy), and the outcome of the negotiation. In addition, in our agent design, a
negotiation is handled by one of the negotiation threads that an agent dispatches. So, in the
following, we will use the term “negotiation thread” quite often and make use of the belief and
desire states.

slow
In a case, the desires include the number of negotiation steps allowed and the time allowed. That
is, a negotiation thread desires to complete a particular negotiation in n iterations and s seconds.
A small n means that fewer messages are exchanged and the negotiation may avoid incurring too
much overhead cost per transmission. A small s means that the negotiation is to be completed in
a short time. Suppose we denote the number of negotiation steps allowed as allowedstep , the time
allowed as allowedtime , the number of steps performed so far as sofarstep , and the time elapsed so far
as sofartime . We define the slow predicate for a responding agent α ’s negotiation (intending to
achieve the desire for performing a requested task ρ) as:

()()()() 









>=

allowed

allowed

sofar

sofar

step
time

step
time

tDoDIslow ,, ρααα

time
To implement this predicate, a negotiation thread registers its process ID with a real-time
system-level service and makes use of a time-based notification mechanism. A negotiation asks
the notification mechanism to signal the thread after s seconds. One unique characteristic of the

30

mechanism is that the negotiation thread, after registration, may find out how much of the s
seconds has elapsed after the notification was first registered (for example, 25%, 50, 75%,
100%) by consulting the notification flag: flagt . The value of s is determined by the allowedtime of
the desire states of a case. In our current design, we define the time predicate for an agent α ’s
negotiation as:

() ()1<= flagtnnegotiatiotime

When flagt = 1, that means the time elapsed has reached 100% of allowedtime .

discrete
First, we denote the set of discrete tasks disΘ and the set of non-discrete tasks conΘ . Then we
define the discrete predicate of a requested task ρ as:

() ()disrequestdiscrete Θ∈= ρρ

where ρρ ∈request is part of the requested task.

no_response
Our implementation is the following: After an agent sends out a message, it polls its message
queue for a response before moving on. After pollingt seconds, if the negotiation thread receives
no messages from a particular negotiation partner, then no_response returns true. If there is a
consistently-typed message, then the negotiation thread reacts to it based on our negotiation
protocol.

acceptable
This predicate is used only by an initiating agent when it receives a counter-offer from a
responding agent and refers to non-discrete (continuous) tasks, conΘ . Let us denote a continuous
task as conRr ∈v . There are three key parameters in conρ : { }amountconresconnameconcon ,,, ,, ρρρρ = where

namecon,ρ is the name of the task, rescon,ρ designates the resource involved in the task, and

amountcon,ρ indicates the amount of the resource involved.

In our design, when an agent α realizes ()needed

amountconBB ,: ρα where needed
amountcon,ρ is nonzero, it initiates

negotiations—each with a different requested
amountcon,ρ , to the coalition members—attempting to obtain

enough amountcon,ρ from the members to meet needed
amountcon,ρ , i.e.,

()
needed

amountcon
C

requested
amountcon ,, ρρ

ρα

≥∑r
. At each

agent cycle, the agent α updates its ()needed
amountBB ρα: and

() 









∑
ρ

α
α

ρ
r

C

requested
amountconBB ,: . If ()0: , =needed

amountconBB ρα

then it has achieved its target, and it can abort all current negotiations associated with that
particular resource. The process checks (1) the current usage, (2) the anticipated usage, (3) the
current allocation, and (4) the agreed additional allocation. As needed

amountcon,ρ gets smaller, the

31

remaining negotiations become less demanding in their requests, and vice versa. As each
negotiation completes gradually,

()
∑
ρα

ρ
r

C

requested
amountcon, changes.

Suppose that the kth negotiation thread of the agent α is negotiating to obtain requested

kamountcon ,,ρ from a
responding agent and the responding agent has just counter-offered kρ′ with an offered amount
of kamountcon ,,ρ ′ . Then the acceptability of the counter-offer kρ′ is defined as:

()
() 










≥′+−=′ ∑ needed

amountconkamountcon
requested

kamountcon
C

requested
amountconkacceptable ,,,,,, ρρρρρ

ρα
r

update
The update predicate is used when a responding agent receives information or arguments from
an initiating agent. The objective of this predicate is to find out whether the evidence support for
a requested task is convincing enough for the responding agent to perform it. One key parameter
of a negotiation strategy of a responding agent, r, is the persuasion threshold, ()ρ,, rDopersuasionT , for
a requested task ρ . This is a value created by the responding agent r for ρ ; to agree to ()ρ,rDo ,
the arguments sent by the initiating agent must provide for ρ have to be greater than ρ,persuasionT .

Suppose we denote the evidence support for ()ρ,rDo , with a persuasion threshold,
()ρ,, rDopersuasionT , at temporal interval t as ()()tTSupport rDopersuasion ,, ,, ρρ , and

()() 00,, ,, =timeTSupport rDopersuasion ρρ . The objective of the initiating agent is to obtain

()() ()ρρρ ,,,, ,, rDopersuasionrDopersuasion TtTSupport ≥ in order to convince the responding agent to perform
the requested task. Thus we have the following axiom:

Axiom Desire to Do: If a responding agent r is negotiating with an initiating agent i regarding a
requested task ρ , and at temporal interval t, it has ()() ()ρρρ ,,,, ,, rDopersuasionrDopersuasion TtTSupport ≥ then

()()trDoDD r ,,: ρ . (This supplements the More_info, Agree 2, Counter 1, Stop, and Counter 2
axioms)

When arguments are received by the responding agent, the support value changes based on the
following agent behavioral model:

(1) Agents that have cooperated before will tend to cooperate again.
(2) A responding agent is willing to trust an initiating agent’s perception.
(3) An agent is more inclined to help another agent if that another agent has relied on the

agent for help before.
(4) An agent is more inclined to help another agent if it knows that it is one of the few

possible solutions to the requested task.
(5) An agent is more inclined to help another agent if it knows that that another agent is

busy.

Note that the persuasion threshold and the evidence support work together as a joint intention between
the two negotiating agents. On one hand, the responding agent is helpful and desires to help the
initiating agent, but it also intends to help when it is worthwhile. This implies cooperativeness with a
touch of selfishness in a local sense that translates into global optimization of resource allocation. To

32

make sure that the requested task is worthwhile to do, the responding agent uses a persuasion threshold,
derived from its past experience and its current status. On the other hand, the initiating agent intends
that the responding agent help with its task. It collects its belief states and sends over whatever it thinks
are useful as arguments for its intention. These arguments modify an evidence support value.
Therefore, Definition 4 merges the two intentions, seen from two different perspectives, and the joint
intention is to achieve a successful negotiation. This deviates from the model proposed by Cohen and
Levesque (1990, 1991) but if we view achieving a successful negotiation as a team action, then both
members of the team (the two negotiating agents) are jointly committed to completing the so-called
team action, and are mutually believing that they are doing it.

We have implemented the update function as a CLIPS-based operation. Evaluation heuristics are coded
as CLIPS rules and arguments received from an initiating agent are fed into the CLIPS process
(associated with each negotiation thread) to re-compute the evidence support for a requested task. The
CLIPS process then sends back the updated evidence support to its negotiation thread and waits for
another set of arguments. The negotiation thread and the CLIPS process communicate via a
synchronized pipe connection. The negotiation thread compares the updated evidence support with its
persuasion threshold. If the former is greater than or equal to the latter, then the negotiation thread
agrees to the requested task, composes a message to notify the initiating agent of the deal, and completes
its own negotiation. The core thread of the agent then schedules the requested task in its activity.

2.5.4. Counter Offer
When dealing with continuous resources, the responding agent has a persuasion function,
modified by two parameters: (1) kappa – a willingness factor, and (2) beta – a conceding factor,
and bounded by the maximum resource that it is willing to give up, max

amountcon,ρ . An agent can use
any function2 to express the continuous persuasion value; in our implementation, we examined
two: a linear and an exponential persuasion function.

In our model, the linear persuasion function is:

() kappabetalinear +⋅=Ρ ττ

and, the exponential persuasion function is:

() beta
exp ekappa

τ
τ

−
⋅=Ρ

The variable τ is the evidence support collected so far, i.e., ()()tTSupport rDopersuasion ,, ,, ρρτ = . So, in
the beginning, at st when the support is zero, a responding agent is willing to give up

() kappalinear =Ρ 0 or () kappaexp =Ρ 0 . That is why kappa is called the willingness factor. Then for
0>τ , the conceding rate depends on beta: the larger this value is, the more conceding the

2 There have been a variety of persuasion functions used in previous work in negotiation.
Lander and Lesser (1992) used linear functions of local utility values over contract prices.
Zlotkin and Rosenschein (1996) suggested nonlinear and exponential worth (or utility) functions
and task-based, pre-defined worth functions. In (Faratin et al. 1998), polynomial, exponential,
Boulware tactics and Conceder are used.

33

persuasion function is. The key differences between our persuasion functions and others are (1)
the conceding and willingness factors are determined by past experiences, and adapted to fit the
current situation, (2) each function applies to an evidence support based on arguments, (3) each
function is implicitly bounded by allowedtime for a negotiation, and (4) each function is bounded
by max

amountcon,ρ , the maximum amount of a resource that the agent is willing to give up.

Thus, when a responding agent is about to make a counter-offer, it checks τ , and the counter-
offer, amountcon,ρ ′ is given as:

()

()





>Ρ

Ρ
=′ max

amountcon
max

amountcon
amountcon if ,,

, ρτρ

τ
ρ .

2.6. Results
Our experiments concentrated on evaluating whether negotiating agents can track targets better.
Our hypothesis was that negotiating agents can track targets better since they can coordinate
radar measurements and achieve better triangulation. Our experiments support this hypothesis.
In addition to the accuracy of tracking, we used communication as a measure of quality (length
of messages, frequency of messages and message cost, i.e. length times frequency), since
communication is an important bottleneck to scalability. Here we discuss briefly some
experiments, focusing on the benefits of negotiations and case-based reasoning.

First we compared our system to a multiagent, sensor-controlling network where there is no
communication between the agents, and where when a target appears in the coverage area of a
sensor it is tracked. Next, we compared our case-based negotiating agents to a system where
negotiation uses a predefined, static strategy. We selected the static strategy carefully to make
sure it should be adequate for most cases. Basically, we used the case that had been frequently
retrieved in our previous experiments as the only case in the case-base.

In general, the results, summarized in figures 6-8, were positive. The agents which used no
negotiation sent almost 20% more messages, although they had a 50% smaller message cost, but
had almost 27% worse tracking accuracy than negotiating agents. The non-negotiating agents
exchanged no messages, and only sent their radar measurements to the tracking software. Since
there was no coordination of the measurements, there were too many messages sent to the
tracker. On the other hand, such messages are short compared to arguments exchanged between
agents during negotiation, resulting in lower message costs. Since there was no cooperation to
triangulate measurements, the resulting accuracy was poor. The agents that used a static
negotiation strategy fared worse than the ones that used a case-based, adaptive strategy.
Specifically, the agents using a static protocol sent approximately 10% fewer messages but had a
higher message cost, and had almost 18% worse accuracy than the case-based negotiating
agents. The message cost is due to the fact that the case-based agents change the ranking of the
arguments they communicate based on the situation; this leads to overall more effective
communication acts. The accuracy is due to the fact that case-based agents adapt their
negotiation to the current situation and have a higher chance of achieving agreement for resource
allocation; on the other hand the static strategy agents failed to agree more often and this led to

34

failure to perform the multiple, simultaneous radar measurements that are required for accurate
tracking.

 Figure 6 Tracking accuracy vs. agent behavior

Figure 7 Number of messages to agents and to tracking software vs. agent type. Numbers of messages normalized
for better comparison.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

to other agents to tracker total

N
um

be
r o

f o
cc

ur
re

nc
es

no negotiations

static negotiation
strategy
case-based strategy

0

2

4

6

8

10

12

DX DY Distance

A
ve

ra
ge

 E
rr

or
 in

 F
ee

t

no negotiations
static negotiation strategy
case-based strategy

35

Figure 8 Percentage of successful negotiations vs. negotiation strategy type.

3. Near-Real-Time Negotiating Agents using Domain Constraints
As the project progressed, our choice of using C++ for the agent design became a liability and
limitation: using a JNI proxy for communicating with Radsim and the CP code slowed down our
code; not being able to run within the CP JVM made it impossible to use RF and only 8
communication channels; finally, there was no graceful way to automatically spawn Tracker
agents to respond to the dynamic addition of targets to the environment. Further, as the
Challenge Problem (CP) definition shifted more towards tracking than the real-time aspects of
resource allocation, it was no longer necessary to integrate with a real-time Linux operating
system, and the response of our agents needed to be only near-real-time. Finally, we included
simple knowledge about the domain of application which made our implementation less general,
but also more realistic.

The underlying methodology of our approach remains the same under the second architecture,
and the reader is referred to Section 3 for a description of our theoretical approach. The agents
examine their environment and based on it they establish behavioral and negotiation parameters.
The agents are divided into two categories: Radar Agents (RA) and Tracker Agents (TA). A
Radar Agent controls a sensor, and a Tracker Agent contains the Tracker software. There is a
RA for each sensor and a TA for each target. When the RA has no measurement tasks to carry
out on behalf of any TA, it searches in all of its sectors to detect targets in round-robin fashion,
and it sends these measurements to TAs who would be interested in them. We call this mode the
"Search & Detect" mode, and this mode corresponds to the TA's corresponding mode of
operation. In this mode, the TA continually checks if the measurements it receives from the RAs
it is collaborating with have high-enough confidence for the TA to believe there is a target on a
given sector such that the TA should switch to its tracking mode.

The second mode a Radar Agent works in is called the "Measure" mode, and this mode
corresponds to the tracking mode of operation of the Tracker Agent. When the TA believes that
there is a target visible from a sector on a given RA, it asks for measurements from that RA. So,
as soon as the RA has a specific measurement task to perform, it suspends all searching and
detecting, and it executes its specific measurement tasks only. Since multiple TAs may ask for

0

1 0

2 0

3 0

4 0

5 0

6 0

re s p o n d e r i n i t i a to r to ta l

ty p e s o f n e g o tia t io n s

pe
rc

en
ta

ge
 o

f s
uc

ce
ss

s ta t ic n e g o t ia t io n
s t r a te g y
c a s e - b a s e d s t r a te g y

36

measurements from the same sector, the RA keeps track of which TAs have active measure tasks
to perform on each of its sectors, and uses negotiation-based techniques to switch between these
requests, trying to balance the use of resources.

Tracker Agents provide RAs with information about targets to allow the RAs to reason about
which tracking task to schedule, for how long, and how to switch between tracking tasks.

One addition we have made to our methodology is that we have introduced domain-specific
reasoning in the Tracking Agents. The TAs use heuristics to evaluate the quality of
measurements received from the sensors. Currently, our heuristics integrate the amplitude value
of a measurement, its support by multiple sensor sectors, and the expected location of a target
compared to where the measurement says the target is.

We also introduced the dynamic instantiation of tracking agents when a potential new target is
detected and eventually destroyed when additional measurements cannot be collected to confirm
that the target remains active in the scenario-defined “room”. Figure 9 shows our program
dynamically tracking the two targets from one of the May 2002 CP experiments. The numbers
indicate the trackers generated; “b” indicates the beginning of the tracking (when a tracker is
generated) and “e” the end (when a tracker loses a target and is destroyed). In figure 9 the agents
lost the outside target (indicated by 1b-1e) and reacquired it later (3b-3e).

Figure 9: Dynamic allocation of trackers to targets; May 2002 CP set-up.

The majority of the work for these extensions were limited to the definition of a new class,
NodeController, that was able to utilize the core classes, RadarAgent and TrackerAgent, in the

37

initial version of our agent code with only minor changes and extensions. The NodeController
class now analyzes Search&Detect measurements from its local RadarAgent and communicates
with other NodeControllers to determine if a measurement indicates a new target or supports an
already existing target being tracked. If it is a new target, the NodeController instantiates a new
TrackerAgent to begin tracking the target and advertises the new tracker to other
NodeControllers.

We designed and ran a number of experiments in Radsim, constantly increasing the number of
sensors and targets. We have examples of experiments with 3, 5 and 6 targets for which we have
been able to generate respectable simulation results using up to 20 active nodes. We have found
that it becomes very difficult to design experiments with more than 2 or 3 targets that interact
closely and satisfy the various ANTS constraints. For example, ensuring that all targets are
visible to at least three independent radars and that no more than one target appears in the range
of any radar at the same time, is particularly difficult. Our visualization tools helped us analyze
and design multi-target configurations. Figure 10 shows one of our two largest experiments to
date. The tracks of the targets are indicated by the red figure 8’s.

Figure 10: Experiment configurations with 6 targets and 18 sensors.

Figure 11 shows tracking of 6 targets by 18 sensors, using dynamic tracker generation. As the
number of sensors and trackers increases, we experience performance degradation in Radsim and
the Tracker software that makes the overall system slow down, resulting in worse tracking.

38

Figure 11: Tracking of six targets. One target was lost and later reacquired (3b-3e, 7b-7e), but most targets are

tracked continuously.

4. Challenge Problem Tools and Studies
In addition to the major goal of negotiated resource allocation in distributed domains, our group
was also tasked with some related, parallel work.

4.1. The KU Real Time System for Linux (KURT and RTSS)
KURT was expanded and greatly enhanced under this contract. Previously KURT existed only
as a kernel patch, with all KURT routines implemented as system calls. Adding or modifying
routines required a recompile of the kernel, which could get tedious, especially because each test
machine had to be rebooted with the new kernel. Under the contract we ported KURT to a
loadable Linux kernel module and eliminated the need for kernel recompiles. Another added
benefit is that when changes are necessary, the KURT module can be removed, recompiled, and
reinstalled all without requiring a machine reboot. All of this made writing real-time scheduling
routines for ANTs far simpler than had we used the strict kernel patching method.

In order to request system resources, we developed a middleware to the agents and the system.
This middleware is called RTSS (Real Time Scheduling Services). This layer takes in requests
from the agents for system resources. System resources means:

 a. CPU resource

39

 b. Memory Bandwidth
 c. Network Bandwidth.

Right now the RTSS can guarantee only CPU percentage to the agents. The RTSS, on request
from the agent for the CPU, guarantees this percentage of the CPU with the help of KURT. The
actual usage of the CPU can be obtained by querying the RTSS about the percentage of the CPU
that agent has actually got. This CPU usage information is obtained by modifying the kernel
using a macro that gathers information about the registered processes. This helps in reducing the
overhead of a function call. In order to improve the accuracy of the KURT real-time scheduling,
several optimizations were made to UTIME. UTIME is the microsecond resolution timing
patch to Linux that KURT relies upon to schedule real-time processes at the precision of 10’s of
microseconds. The optimizations included an improved calibration routine that more accurately
calculated several CPU speed-specific values at boot time, reducing the execution time of the
UTIME timer interrupt handler routine, and a change to how UTIME calculates and executes
Linux jiffy events (a jiffy is a heartbeat in Linux) to better accommodate future efforts involving
NTP time-standard clock synchronization. Support for multiprocessor systems was also added to
UTIME.

The RTSS also grants users the ability to change real-time schedules on the fly, rather than
having to wait for the last submitted schedule to complete before the next can be used. The
RTSS generates cyclic schedules with periods of 10ms, 20ms, 40ms, or 80ms. This period
depends upon the total CPU-usage request from all agents on a single machine. If the total
request is from 0-10% of the CPU, the schedule will have a period of 10ms. If the request is
from 11-20%, the schedule will be 20ms long. A request from 21-40% generates a 40ms
schedule and a request from 41-66% (66% is the maximum total percentage request possible)
generates a schedule of 80ms. These particular schedule lengths are used in order to correctly
calculate the actual cpu-usage for each thread of an agent (a thread may request 10%, but may
only use 5% due to blocking or sleeping). The CPU-usage calculation code runs every 80ms and
determines each registered agent thread's actual use of the CPU during the last calculation
period. Since the greatest common multiple of each possible cyclic schedule length is 80ms, this
calculation will be accurate.

There are some cases for agents where requesting a percentage of the CPU for a single thread is
difficult to determine because that particular thread's progress is dependent upon the progress of
other threads. In these cases, requesting a CPU percentage for a group of threads is more
beneficial. KURT now provides a group-aware scheduler for this purpose. When a group
scheduling timer event occurs, the top-level KURT scheduler determines which group the event
was for and then calls the group scheduling routine. This routine examines each thread in the
group and grants context to the first non-blocked thread. This is a very basic policy. We are
evaluating the use of more complicated group scheduling policies.

4.2. The KU KickStart Tools (KUKT)
The KU KickStart Tools (KUKT, pronounced “cooked”) are extensions to the standard Red
Hard Kickstart utility that significantly automate Linux system software installation and
configuration, specifically for support of experimentation. The existing Red Had utility is
intended to be interactive with the user as they install software on their Linux system, typically
from CD. However, several projects use sets of Linux machines for experimental studies in

40

which reproducibility of the system software and configuration is crucial. The KUKT extensions
to Red Hat’s KickStart utility have been designed to automate the installation process, and to
emphasize reproducibility of system configuration in service of good experimental technique.

The KUKT system is divided into two parts: client and server. The client portion addresses how
a client machine can have a specific configuration of Linux installed upon it. This includes
utilities to create boot floppies, as well as procedures for supporting remotely controlled
initiation of system installation. The server portion is the bulk of the KUKT approach, and
controls every aspect of system software installation on the target machines.

KUKT assumes that a server machine, the KUKT server, is present on an Ethernet network
shared with the experimental machines being controlled. The KUKT approach is based on a
hardware and software profile for each machine being configured. The hardware profile
provides information required to configure the kernel required to support system configuration.
One of the most important elements of the hardware profile is, for example, the type of Ethernet
card in the machine so that the client machine being configured can communicate with the
KUKT server during configuration. The software profile specifies all software that is installed
on the machine. This includes all Linux system software, of course, but also all user generated
software used for the experiment.

The KUKT server provides storage for all profile files required to manage the set of machines
under its control, as well as for the software whose installation is described by the profiles.
Several groups of investigators can thus share a set of machines by writing appropriate profiles
for each machine in their experiment, and by loading the software unique to their experiments on
the machine. Changing use of a set of experimental machines from one group to another is then
as simple as instructing the machines to install the configuration described by the software
profiles provided by the group taking over use of the machines.

While the KUKT tools already existed for KU internal use, we had to perform a significant
amount of work to make them ready for more general use. We have produced client and server
software that should work in a generic experimental environment, and the documentation
required by those wishing to set it up. While one or two refinements may be desired, we believe
the delivered software is complete, and will require no further development unless users
encounter problems.

4.3. Data Streams
The Data Streams (DS) uses a high resolution timer, the CPU time stamp counter on Intel
Pentium class processors, to place all events in the system on the same time line. This enables
the user to relate events in different processes to each other, and to events at the system level.
Under the ANTS project we implemented the DS approach in the Linux kernel (DSKI) and with
user-level interfaces (DSUI) Java. It provides counters, events, and histograms as native object
types for data collection purposes. The Java-DSUI has been designed to be lightweight; it
should have minimal impact on the programs it monitors, and is suitable for both debugging and
performance measuring purposes.

The two most fundamental ideas in the data streams approach to performance evaluation are the
"instrumentation point " and the "data source". Instrumentation points are placed in the code for

41

which performance information is desired, at places where specific data sources should be
updated. The term "data source" is used from the perspective of a process gathering data. In that
sense, a data source is thus any separate element provided by the DS from which an interested
user program can obtain performance information. A "data stream" refers to the set of data
gathered by a particular user process from one or more data sources in the course of an
experiment. The word "stream" is appropriate here since the data gathered is time-stamped, and
can thus be placed in a total order. The data gathering process configures a data stream by
associating a set of data sources with each data stream as it desires.

Implementing the data streams approach for user level processes we use a specification file to
describe the set of data sources that should be used during a given experiment and supply the
name of the specification file to the process during invocation. In Java we use a specification
file to describe the name space, and a utility program to generate a Java class specification in a
given package describing the data source name space of the Java program. This approach
reduces the labor of instrumenting Java code to a reasonable level, while providing the
experimenter with maximum control. New data sources can be defined and used with minimal
effort, and the exact set of data sources required for an experiment can be specified.

The Java version of the DSUI takes advantage of its object orientation to direct the output of
each data source to the desired output destination using the generic print method and the existing
Java output stream facility. The associated streams can be directed to files, memory buffers,
devices, etc.

The Java version of the DSUI provides powerful and flexible support for instrumenting
application code, and for collecting performance evaluation information during experiments.
Users can create sets of data sources, define the name space of data sources, and use the defined
name space to control data source use. Since the DSUI uses the Pentium TSC to gather the time
stamps, event streams from different sources on the same machine can be merged to represent all
events on a common time line. The availability of counters and histograms as well as generic
events lowers the overhead of gathering certain common types of data. The Java DSUI has
passed both static and dynamic tests. The static tests were performed by ESC/Java
(<URL:http://research.compaq.com/SRC/esc/>). The dynamic tests were written and applied in
an ad hoc manner.

4.4. The Communication Server
The Communication Server is a replacement for the slow RF links. It is intended to provide a
simulation of the RF links, but allow the latencies and drop rates to be controlled. The
Communication server supports the narrow and wide formats of the RF channels, has message
logging for debugging and accounting purposes, and supports collision and bandwidth modeling.

The desired bandwidth can be specified on the command line, using the -b option. If no
bandwidth is specified, the default is 19600 bits per second. When collision modeling is enabled,
the structure of the message handling is changed in the following manner:

a. When the client handler thread receives a message from the client, it calculates
the latency for the message according to the modeled bandwidth.

b. Once a message is received by the client handler thread, the xmit_start_time field
of the message structure is assigned the current timestamp value, indicating the

42

start time of the message. The time it would take to transmit the message on the
modeled channel is calculated to be delay = (message_size * 8) / bandwidth. The
xmit_end_time of the message structure is then assigned the value
xmit_start_time + delay.

c. The client handler thread inserts the message in the channel list. Before it stores
the message in the channel list, it checks for any collisions with existing messages
on that channel. This is done by comparing the start time of the new message with
the end times of the existing messages. If the start time is less than the end time of
any message, both messages are marked as collided.

d. The output control thread is then signaled, indicating that a new message has been
put in the channel list.

e. When the output control checks for messages in the channel list, it checks for
messages whose xmit_end_time has expired. If such a message is marked as
collided, it is simply discarded. Otherwise, the message is delivered to the clients
receiving on the appropriate channel.

f. Unexpired messages (i.e., those with xmit_end_time in the future), cannot be
delivered. To avoid wasting CPU cycles, the output control thread sleeps when
there are no expired messages.

We tested the Communication Server extensively to identify its performance. We tested, among
others, message integrity, message ordering, and throughput performance using C-clients, Java
clients and the CP code. We also tested the collision model without network delays and then
with the actual network and identified the delays associated with it.

4.5. Modifications to the CP Code
We were charged with discovering the causes of unacceptably high message loss rates when
using the RF hardware, and with removing or alleviating those causes as possible. During our
work we discovered and compensated for several contributing factors.

1. We discovered possible interference between the sending and receiving threads in
the CP code. We inserted explicit synchronization between those threads, and saw
another large drop in message loss rates as a result. Our analysis shows that a
running receive thread interferes with the transmission of messages. Our solution
causes the receive thread to block while the sending thread transmits.

2. We discovered that a bug in the Linux 2.2 series of kernels affects the message loss

rate. This bug, in the serial driver, causes a process using a serial line to be
suspended for long periods of time, occasionally. These long suspensions resulted
in missing some of the bytes of a message, and consequently the entire message had
to be discarded. The Linux 2.4 series of kernels do not have this bug, so upgrading
the kernel is sufficient to improve the message loss rate. For those unable to
upgrade, we provided a workaround. This workaround schedules the CP code
process as a real-time process, which avoids the incorrect behavior. However, it
requires that the CP code be executed by a privileged user.

3. We improved the makefile of the CP code so that it is no longer necessary to do a
'make configure' before a 'make' when compiling. The makefile determines if a
'make configure' is required and does it automatically.

43

4. We edited the CP code so that it is no longer necessary to manually comment out or
uncomment the '#include ' in the file LynxHPDriver.c. The make files and
LynxHPDriver.c have been modified to automatically determine if the code is
being compiled on a LinuxOS or not and then does the right thing.

5. If the Linux kernel version is less than or equal to 2.3.0 the LynxHPDriver.c file is
automatically changed during compilation (using #ifdefs) to use RoundRobin
process scheduling during message transmissions to work around the problem in
the serial driver that causes the 'tcdrain' function to take too long to return,
causing transmission overlaps during the PingPong test. If the kernel version is
newer than 2.3.0 then message transmissions occur during 'normal' process
scheduling since the newer kernels do not have the serial driver problem.

6. Modified the LynxHP, TCP and UDP communication drivers to set a local time
stamp when a message has completed transmission. The MTIRadar driver was
modified to use the message transmission time stamp to determine the minimum
amount of time to wait before it is safe to start a radar measurement to avoid
interference from the LynxHP transmitter. This used to be a fixed 50msec wait (CP
1.4). The wait is now calculated dynamically to be between 0 and 180msec. Tests
were preformed to determine the minimum amount of time to wait after a LynxRF
message has finished transmission before it is safe to start a radar measurement.
This was determined to be 180mS. When a radar measurement is requested, the
MTI radar driver determines the difference between the current time and the last
message transmission completion time. If the difference is greater than 180msec
the radar measurement starts immediately, otherwise there is a wait of 180msec-
(currentTime - TxFinishTime).

7. The knowledge of the structure of the 'msgSent' and 'msgReceived' time stamps
for the control/Message class was spread across the control/

MessageQueueServiceThread, control/Message, control/Measurement,
control/Response and control/UserMessage classes. This code was moved
where is should be in the control/Message class. This significantly improves
code maintenance if there are any future changes in the control/Message fields.

8. Added code to automatically detect and warn the user, at run time, if the serial
cables for the LynxHP or MTIRadar are not connected to the host.

9. The control/UserMessage class is now a descendent of the runtime/Message
class. The consequence of this is that one less class instance is created for each user
message received and several byte arrays do not have to be created and copied.
When running on our test machines in native threads there is an increase in message
rate of the PingPong test from 13.6 msgs/sec to 15.3 msgs/sec. When running in
green threads there is no measurable speed difference. The speed is 12.87 msgs/sec

Altogether, our code improvements have resulted in message loss rates of substantially less than
1% for all of our systems, regardless of message length, CPU load, or age of the system.

5. Leave-Behinds and Publications
We delivered the following code modules to DARPA:

o Agent Code - includes profiler, task manager, negotiation manager, reasoner, etc.
o Radar Calibration Fix - our code to correct the operational problem (sector switching) of

the radar calibration code

44

o Case-Based Reasoning code
o 3D Visualization - 3D real-time visualization and scene input parser
o Radar Sensor-Sector Target Computation
o Genetic Algorithm Module for Case Generation
o CP Performance Enhancements
o KU Real Time Linux (KURT)
o KU Kickstart Tools (KUKT)
o Communication Server
o Instrumentation Java DSUI, instrumentation tools for Java programs

We produced the following publications as a direct result of the project:

1. Soh, L-K, C. Tsatsoulis, and H. Sevay. 2003. “A Satisficing, Negotiated, and Learning
Coalition Formation Architecture,” in: Distributed Sensor Networks: A multiagent
perspective, C. Ortiz, V. Lesser and M. Tambe (Eds.), Kluwer, (to appear).

2. Soh, L-K. and C. Tsatsoulis. 2002. “Satisficing Coalition Formation among Agents,” 1st
Int. Conf. On Autonomous Agents and Multiagent Systems, 1062-63.

3. Soh, L-K. and C. Tsatsoulis. 2002. “Allocation Algorithms in Dynamic Negotiation-
Based Coalition Formation,” Workshop on Teamwork and Coalition Formation (held
during the 1st Int. Conf. On Autonomous Agents and Multiagent Systems), 16-23.

4. Soh, L-K. and C. Tsatsoulis. 2002. “Learning to Form Negotiation Coalitions in a
Multiagent System,” AAAI Spring Symposium on Collaborative Learning Agents, 106-12.

5. Soh, L-K. and C. Tsatsoulis. 2001. “Agent-Based Argumentative Negotiations with Case-
Based Reasoning,” AAAI Fall Symposium on Negotiation Methods for Autonomous
Cooperative Systems, 16-25.

6. Soh, L-K., C. Tsatsoulis, M. Jones and A. Agah. 2001. “Evolving Cases for Case-Based
Reasoning Multiagent Negotiations,” in: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-2001, , San Francisco, CA: Morgan Kaufmann
Publishers, 909.

7. Soh, L-K. and C. Tsatsoulis. 2001. “Combining Genetic Algorithms and Case-Based
Reasoning for Genetic Learning of a Casebase: A Conceptual Framework,” in:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2001, ,
San Francisco, CA: Morgan Kaufmann Publishers, 376-383.

8. Niehaus, D., C. Tsatsoulis, W. Dinkel, and A. Gautam. 2001. “An Infrastructure for
Real-Time, Reflective Intelligent Agents,” Ninth International Workshop on Parallel and
Distributed Real-Time Systems and Sixth International Workshop on Embedded/
Distributed HPC Systems Applications, San Francisco, CA.

9. Soh, L-K. and C. Tsatsoulis. 2001. “Reflective Negotiating Agents for Real-Time
Multisensor Target Tracking,” Int. J. Conf. On Artificial Intelligence (IJCAI-01), Seattle,
WA, 1121-1127.

10. Dinkel, W., A. Gautan and D. Niehaus. 2000. Comparison of Linux/RK and KURT for
Use in ANTS, ITTC Technical Report, The University of Kansas.

6. References

Allen, J. F. (1983). Maintaining knowledge about temporal intervals, Communications of the

ACM, 26(11), 832-843.

45

Allen, J. F. (1991). Time and time again: the many ways to represent time, International Journal
of Intelligent Systems, 6(4), 341-355.

Allen, J. F. and Ferguson, G. (1994). Actions and events in interval temporal logic, Journal of
Logic and Computation, Special Issue on Actions and Processes, 4(5), 531-579.

Brazier, F. and Treur, J. (1996). Compositional modelling of reflective agents. In Proceedings
of the 10th Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW’96),
Banff, Alberta, Canada, 13/1-13/12.

Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with commitment, Artificial
Intelligence, 42(2-3), 213-261.

Faratin, P., Sierra, C., and Jennings, N. R. (1998). Negotiation decision functions for
autonomous agents, International Journal of Robotics and Autonomous Systems, 24(3-4),
159-182.

Galliers, J. R. (1998). A strategic framework for multi-agent cooperative dialogue, in
Proceedings of ECAI’88, Munich, Germany, 415-420.

Kolodner, J. (1993). Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA.
Lander, S. and Lesser, V. (1992). Customizing distributed search among agents with

heterogeneous knowledge, in Proceedings of CIKM-92, Baltimore, MD, 335-344.
Noriega, P. and Sierra, C. (1996). Towards layered dialogical agents, in Proceedings of ECAI

Workshop on ATAL’96, Budapest, Hungary, 157-171.
Parsons, S., Sierra, C., and Jennings, N. R. (1998). Agents that reason and negotiate by arguing,

Journal of Logic and Computation, 8(3), 261-292.
Rao, A. and Georgeff, M. (1991). Modeling rational agents within a BDI-architecture, in

Proceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning, 473-484.

Rao, A. and Georgeff, M. (1995). BDI agents: from theory to practice, in Proceedings of
ICMAS-95, San Francisco, CA, 312-319.

Srinivasan, B., Pather, S., Hill, R., Ansari, F., and Niehaus, D. (1998). A firm real-time system
implementation using commercial off-the shelf hardware and free software, in Proceedings
of RTAS-98, June Denver, CO, 112-119.

Tambe, M. (1997). Towards flexible teamwork, Journal of Artificial Intelligence Research, 7,
83-124.

Vere, S. A. (1983). Planning in time: windows and durations for activities and goals, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 5(3), 246-267.

Wooldridge, M. and Jennings, N. (1995). Intelligent agents: theory and practice, The Knowledge
Engineering Review, 10(2), 114-152.

Zlotkin, G. and Rosenschein, J. S. (1996). Mechanism design for automated negotiation, and its
application to task oriented domains, Artificial Intelligence, 86(2), 195-244.

